8,299 research outputs found

    Persian topic detection based on Human Word association and graph embedding

    Full text link
    In this paper, we propose a framework to detect topics in social media based on Human Word Association. Identifying topics discussed in these media has become a critical and significant challenge. Most of the work done in this area is in English, but much has been done in the Persian language, especially microblogs written in Persian. Also, the existing works focused more on exploring frequent patterns or semantic relationships and ignored the structural methods of language. In this paper, a topic detection framework using HWA, a method for Human Word Association, is proposed. This method uses the concept of imitation of mental ability for word association. This method also calculates the Associative Gravity Force that shows how words are related. Using this parameter, a graph can be generated. The topics can be extracted by embedding this graph and using clustering methods. This approach has been applied to a Persian language dataset collected from Telegram. Several experimental studies have been performed to evaluate the proposed framework's performance. Experimental results show that this approach works better than other topic detection methods

    Extracting News Events from Microblogs

    Full text link
    Twitter stream has become a large source of information for many people, but the magnitude of tweets and the noisy nature of its content have made harvesting the knowledge from Twitter a challenging task for researchers for a long time. Aiming at overcoming some of the main challenges of extracting the hidden information from tweet streams, this work proposes a new approach for real-time detection of news events from the Twitter stream. We divide our approach into three steps. The first step is to use a neural network or deep learning to detect news-relevant tweets from the stream. The second step is to apply a novel streaming data clustering algorithm to the detected news tweets to form news events. The third and final step is to rank the detected events based on the size of the event clusters and growth speed of the tweet frequencies. We evaluate the proposed system on a large, publicly available corpus of annotated news events from Twitter. As part of the evaluation, we compare our approach with a related state-of-the-art solution. Overall, our experiments and user-based evaluation show that our approach on detecting current (real) news events delivers a state-of-the-art performance

    From the User to the Medium: Neural Profiling Across Web Communities

    Full text link
    Online communities provide a unique way for individuals to access information from those in similar circumstances, which can be critical for health conditions that require daily and personalized management. As these groups and topics often arise organically, identifying the types of topics discussed is necessary to understand their needs. As well, these communities and people in them can be quite diverse, and existing community detection methods have not been extended towards evaluating these heterogeneities. This has been limited as community detection methodologies have not focused on community detection based on semantic relations between textual features of the user-generated content. Thus here we develop an approach, NeuroCom, that optimally finds dense groups of users as communities in a latent space inferred by neural representation of published contents of users. By embedding of words and messages, we show that NeuroCom demonstrates improved clustering and identifies more nuanced discussion topics in contrast to other common unsupervised learning approaches

    Patent Analytics Based on Feature Vector Space Model: A Case of IoT

    Full text link
    The number of approved patents worldwide increases rapidly each year, which requires new patent analytics to efficiently mine the valuable information attached to these patents. Vector space model (VSM) represents documents as high-dimensional vectors, where each dimension corresponds to a unique term. While originally proposed for information retrieval systems, VSM has also seen wide applications in patent analytics, and used as a fundamental tool to map patent documents to structured data. However, VSM method suffers from several limitations when applied to patent analysis tasks, such as loss of sentence-level semantics and curse-of-dimensionality problems. In order to address the above limitations, we propose a patent analytics based on feature vector space model (FVSM), where the FVSM is constructed by mapping patent documents to feature vectors extracted by convolutional neural networks (CNN). The applications of FVSM for three typical patent analysis tasks, i.e., patents similarity comparison, patent clustering, and patent map generation are discussed. A case study using patents related to Internet of Things (IoT) technology is illustrated to demonstrate the performance and effectiveness of FVSM. The proposed FVSM can be adopted by other patent analysis studies to replace VSM, based on which various big data learning tasks can be performed
    • …
    corecore