849 research outputs found

    In no uncertain terms : a dataset for monolingual and multilingual automatic term extraction from comparable corpora

    Get PDF
    Automatic term extraction is a productive field of research within natural language processing, but it still faces significant obstacles regarding datasets and evaluation, which require manual term annotation. This is an arduous task, made even more difficult by the lack of a clear distinction between terms and general language, which results in low inter-annotator agreement. There is a large need for well-documented, manually validated datasets, especially in the rising field of multilingual term extraction from comparable corpora, which presents a unique new set of challenges. In this paper, a new approach is presented for both monolingual and multilingual term annotation in comparable corpora. The detailed guidelines with different term labels, the domain- and language-independent methodology and the large volumes annotated in three different languages and four different domains make this a rich resource. The resulting datasets are not just suited for evaluation purposes but can also serve as a general source of information about terms and even as training data for supervised methods. Moreover, the gold standard for multilingual term extraction from comparable corpora contains information about term variants and translation equivalents, which allows an in-depth, nuanced evaluation

    D-TERMINE : data-driven term extraction methodologies investigated

    Get PDF
    Automatic term extraction is a task in the field of natural language processing that aims to automatically identify terminology in collections of specialised, domain-specific texts. Terminology is defined as domain-specific vocabulary and consists of both single-word terms (e.g., corpus in the field of linguistics, referring to a large collection of texts) and multi-word terms (e.g., automatic term extraction). Terminology is a crucial part of specialised communication since terms can concisely express very specific and essential information. Therefore, quickly and automatically identifying terms is useful in a wide range of contexts. Automatic term extraction can be used by language professionals to find which terms are used in a domain and how, based on a relevant corpus. It is also useful for other tasks in natural language processing, including machine translation. One of the main difficulties with term extraction, both manual and automatic, is the vague boundary between general language and terminology. When different people identify terms in the same text, it will invariably produce different results. Consequently, creating manually annotated datasets for term extraction is a costly, time- and effort- consuming task. This can hinder research on automatic term extraction, which requires gold standard data for evaluation, preferably even in multiple languages and domains, since terms are language- and domain-dependent. Moreover, supervised machine learning methodologies rely on annotated training data to automatically deduce the characteristics of terms, so this knowledge can be used to detect terms in other corpora as well. Consequently, the first part of this PhD project was dedicated to the construction and validation of a new dataset for automatic term extraction, called ACTER – Annotated Corpora for Term Extraction Research. Terms and Named Entities were manually identified with four different labels in twelve specialised corpora. The dataset contains corpora in three languages and four domains, leading to a total of more than 100k annotations, made over almost 600k tokens. It was made publicly available during a shared task we organised, in which five international teams competed to automatically extract terms from the same test data. This illustrated how ACTER can contribute towards advancing the state-of-the-art. It also revealed that there is still a lot of room for improvement, with moderate scores even for the best teams. Therefore, the second part of this dissertation was devoted to researching how supervised machine learning techniques might contribute. The traditional, hybrid approach to automatic term extraction relies on a combination of linguistic and statistical clues to detect terms. An initial list of unique candidate terms is extracted based on linguistic information (e.g., part-of-speech patterns) and this list is filtered based on statistical metrics that use frequencies to measure whether a candidate term might be relevant. The result is a ranked list of candidate terms. HAMLET – Hybrid, Adaptable Machine Learning Approach to Extract Terminology – was developed based on this traditional approach and applies machine learning to efficiently combine more information than could be used with a rule-based approach. This makes HAMLET less susceptible to typical issues like low recall on rare terms. While domain and language have a large impact on results, robust performance was reached even without domain- specific training data, and HAMLET compared favourably to a state-of-the-art rule-based system. Building on these findings, the third and final part of the project was dedicated to investigating methodologies that are even further removed from the traditional approach. Instead of starting from an initial list of unique candidate terms, potential terms were labelled immediately in the running text, in their original context. Two sequential labelling approaches were developed, evaluated and compared: a feature- based conditional random fields classifier, and a recurrent neural network with word embeddings. The latter outperformed the feature-based approach and was compared to HAMLET as well, obtaining comparable and even better results. In conclusion, this research resulted in an extensive, reusable dataset and three distinct new methodologies for automatic term extraction. The elaborate evaluations went beyond reporting scores and revealed the strengths and weaknesses of the different approaches. This identified challenges for future research, since some terms, especially ambiguous ones, remain problematic for all systems. However, overall, results were promising and the approaches were complementary, revealing great potential for new methodologies that combine multiple strategies

    Word-to-Word Models of Translational Equivalence

    Full text link
    Parallel texts (bitexts) have properties that distinguish them from other kinds of parallel data. First, most words translate to only one other word. Second, bitext correspondence is noisy. This article presents methods for biasing statistical translation models to reflect these properties. Analysis of the expected behavior of these biases in the presence of sparse data predicts that they will result in more accurate models. The prediction is confirmed by evaluation with respect to a gold standard -- translation models that are biased in this fashion are significantly more accurate than a baseline knowledge-poor model. This article also shows how a statistical translation model can take advantage of various kinds of pre-existing knowledge that might be available about particular language pairs. Even the simplest kinds of language-specific knowledge, such as the distinction between content words and function words, is shown to reliably boost translation model performance on some tasks. Statistical models that are informed by pre-existing knowledge about the model domain combine the best of both the rationalist and empiricist traditions

    A deep learning approach to bilingual lexicon induction in the biomedical domain.

    Get PDF
    BACKGROUND: Bilingual lexicon induction (BLI) is an important task in the biomedical domain as translation resources are usually available for general language usage, but are often lacking in domain-specific settings. In this article we consider BLI as a classification problem and train a neural network composed of a combination of recurrent long short-term memory and deep feed-forward networks in order to obtain word-level and character-level representations. RESULTS: The results show that the word-level and character-level representations each improve state-of-the-art results for BLI and biomedical translation mining. The best results are obtained by exploiting the synergy between these word-level and character-level representations in the classification model. We evaluate the models both quantitatively and qualitatively. CONCLUSIONS: Translation of domain-specific biomedical terminology benefits from the character-level representations compared to relying solely on word-level representations. It is beneficial to take a deep learning approach and learn character-level representations rather than relying on handcrafted representations that are typically used. Our combined model captures the semantics at the word level while also taking into account that specialized terminology often originates from a common root form (e.g., from Greek or Latin)

    A survey of cross-lingual word embedding models

    Get PDF
    Cross-lingual representations of words enable us to reason about word meaning in multilingual contexts and are a key facilitator of cross-lingual transfer when developing natural language processing models for low-resource languages. In this survey, we provide a comprehensive typology of cross-lingual word embedding models. We compare their data requirements and objective functions. The recurring theme of the survey is that many of the models presented in the literature optimize for the same objectives, and that seemingly different models are often equivalent, modulo optimization strategies, hyper-parameters, and such. We also discuss the different ways cross-lingual word embeddings are evaluated, as well as future challenges and research horizons.</jats:p

    Multiword expression processing: A survey

    Get PDF
    Multiword expressions (MWEs) are a class of linguistic forms spanning conventional word boundaries that are both idiosyncratic and pervasive across different languages. The structure of linguistic processing that depends on the clear distinction between words and phrases has to be re-thought to accommodate MWEs. The issue of MWE handling is crucial for NLP applications, where it raises a number of challenges. The emergence of solutions in the absence of guiding principles motivates this survey, whose aim is not only to provide a focused review of MWE processing, but also to clarify the nature of interactions between MWE processing and downstream applications. We propose a conceptual framework within which challenges and research contributions can be positioned. It offers a shared understanding of what is meant by "MWE processing," distinguishing the subtasks of MWE discovery and identification. It also elucidates the interactions between MWE processing and two use cases: Parsing and machine translation. Many of the approaches in the literature can be differentiated according to how MWE processing is timed with respect to underlying use cases. We discuss how such orchestration choices affect the scope of MWE-aware systems. For each of the two MWE processing subtasks and for each of the two use cases, we conclude on open issues and research perspectives

    D7.4 Third evaluation report. Evaluation of PANACEA v3 and produced resources

    Get PDF
    D7.4 reports on the evaluation of the different components integrated in the PANACEA third cycle of development as well as the final validation of the platform itself. All validation and evaluation experiments follow the evaluation criteria already described in D7.1. The main goal of WP7 tasks was to test the (technical) functionalities and capabilities of the middleware that allows the integration of the various resource-creation components into an interoperable distributed environment (WP3) and to evaluate the quality of the components developed in WP5 and WP6. The content of this deliverable is thus complementary to D8.2 and D8.3 that tackle advantages and usability in industrial scenarios. It has to be noted that the PANACEA third cycle of development addressed many components that are still under research. The main goal for this evaluation cycle thus is to assess the methods experimented with and their potentials for becoming actual production tools to be exploited outside research labs. For most of the technologies, an attempt was made to re-interpret standard evaluation measures, usually in terms of accuracy, precision and recall, as measures related to a reduction of costs (time and human resources) in the current practices based on the manual production of resources. In order to do so, the different tools had to be tuned and adapted to maximize precision and for some tools the possibility to offer confidence measures that could allow a separation of the resources that still needed manual revision has been attempted. Furthermore, the extension to other languages in addition to English, also a PANACEA objective, has been evaluated. The main facts about the evaluation results are now summarized
    corecore