43 research outputs found

    Source-Channel Diversity for Parallel Channels

    Full text link
    We consider transmitting a source across a pair of independent, non-ergodic channels with random states (e.g., slow fading channels) so as to minimize the average distortion. The general problem is unsolved. Hence, we focus on comparing two commonly used source and channel encoding systems which correspond to exploiting diversity either at the physical layer through parallel channel coding or at the application layer through multiple description source coding. For on-off channel models, source coding diversity offers better performance. For channels with a continuous range of reception quality, we show the reverse is true. Specifically, we introduce a new figure of merit called the distortion exponent which measures how fast the average distortion decays with SNR. For continuous-state models such as additive white Gaussian noise channels with multiplicative Rayleigh fading, optimal channel coding diversity at the physical layer is more efficient than source coding diversity at the application layer in that the former achieves a better distortion exponent. Finally, we consider a third decoding architecture: multiple description encoding with a joint source-channel decoding. We show that this architecture achieves the same distortion exponent as systems with optimal channel coding diversity for continuous-state channels, and maintains the the advantages of multiple description systems for on-off channels. Thus, the multiple description system with joint decoding achieves the best performance, from among the three architectures considered, on both continuous-state and on-off channels.Comment: 48 pages, 14 figure

    Robust video coder solution for wireless streaming: applications in Gaussian channels

    Get PDF
    With the technological progress in wireless communications seen in the past decade, the miniaturization of personal computers was imminent. Due to the limited availability of resources in these small devices, it has been preferable to stream the media over widely deployed networks like the Internet. However, the conventional protocols used in physical and data-link layers are not adequate for reliable video streaming over noisy wireless channels. There are several popular and well-studied mechanisms for addressing this problem, one of them being Multiple-Description-Coding. However, proposed solutions are too specialized, focusing the coding of either motion or spatial information; thus failing to address the whole problem, that is - the robust video coding. In this thesis a novel MDC video coder is presented, which was developed during an internship at the I3S laboratory - France. The full coding scheme is capable of robust transmission of Motion-Vectors and wavelet-subband information over noisy wireless channels. The former is accomplished by using a MAP-based MD-decoding algorithm available in literature, while the robust transmission of wavelet-subbands is achieved using a state-of-the-art registry-based JPEG-2000 MDC. In order to e ciently balance MV information between multiple descriptions, a novel R/D-optimizing MD bitallocation scheme is presented. As it is also important to e ciently distribute bits between subband and motion information, a global subband/motion-vector bit-allocation technique found in literature was adopted and improved. Indeed, this thesis would not be complete without the presentation of produced streams as well as of a set of backing scienti c results

    Fusion of Global and Local Motion Estimation Using Foreground Objects for Distributed Video Coding

    Get PDF
    International audienceThe side information in distributed video coding is estimated using the available decoded frames, and exploited for the decoding and reconstruction of other frames. The quality of the side information has a strong impact on the performance of distributed video coding. Here we propose a new approach that combines both global and local side information to improve coding performance. Since the background pixels in a frame are assigned to global estimation and the foreground objects to local estimation, one needs to estimate foreground objects in the side information using the backward and forward foreground objects, The background pixels are directly taken from the global side information. Specifically, elastic curves and local motion compensation are used to generate the foreground objects masks in the side information. Experimental results show that, as far as the rate-distortion performance is concerned, the proposed approach can achieve a PSNR improvement of up to 1.39 dB for a GOP size of 2, and up to 4.73 dB for larger GOP sizes, with respect to the reference DISCOVER codec. Index Terms A. ABOU-ELAILAH, F. DUFAUX, M. CAGNAZZO, and B. PESQUET-POPESCU are with the Signal and Image Processin

    Convexity and Operational Interpretation of the Quantum Information Bottleneck Function

    Full text link
    In classical information theory, the information bottleneck method (IBM) can be regarded as a method of lossy data compression which focusses on preserving meaningful (or relevant) information. As such it has recently gained a lot of attention, primarily for its applications in machine learning and neural networks. A quantum analogue of the IBM has recently been defined, and an attempt at providing an operational interpretation of the so-called quantum IB function as an optimal rate of an information-theoretic task, has recently been made by Salek et al. However, the interpretation given in that paper has a couple of drawbacks; firstly its proof is based on a conjecture that the quantum IB function is convex, and secondly, the expression for the rate function involves certain entropic quantities which occur explicitly in the very definition of the underlying information-theoretic task, thus making the latter somewhat contrived. We overcome both of these drawbacks by first proving the convexity of the quantum IB function, and then giving an alternative operational interpretation of it as the optimal rate of a bona fide information-theoretic task, namely that of quantum source coding with quantum side information at the decoder, and relate the quantum IB function to the rate region of this task. We similarly show that the related privacy funnel function is convex (both in the classical and quantum case). However, we comment that it is unlikely that the quantum privacy funnel function can characterize the optimal asymptotic rate of an information theoretic task, since even its classical version lacks a certain additivity property which turns out to be essential.Comment: 17 pages, 7 figures; v2: improved presentation and explanations, one new figure; v3: Restructured manuscript. Theorem 2 has been found previously in work by Hsieh and Watanabe; it is now correctly attribute

    Analog Multiple Descriptions: A Zero-Delay Source-Channel Coding Approach

    Full text link
    This paper extends the well-known source coding problem of multiple descriptions, in its general and basic setting, to analog source-channel coding scenarios. Encoding-decoding functions that optimally map between the (possibly continuous valued) source and the channel spaces are numerically derived. The main technical tool is a non-convex optimization method, namely, deterministic annealing, which has recently been successfully used in other mapping optimization problems. The obtained functions exhibit several interesting structural properties, map multiple source intervals to the same interval in the channel space, and consistently outperform the known competing mapping techniques.Comment: Submitted to ICASSP 201

    Sequential coding of Gauss-Markov sources with packet erasures and feedback

    Get PDF
    We consider the problem of sequential transmission of Gauss-Markov sources. We show that in the limit of large spatial block lengths, greedy compression with respect to the squared error distortion is optimal; that is, there is no tension between optimizing the distortion of the source in the current time instant and that of future times. We then extend this result to the case where at time t a random compression rate rt is allocated independently of the rate at other time instants. This, in turn, allows us to derive the optimal performance of sequential coding over packet-erasure channels with instantaneous feedback. For the case of packet erasures with delayed feedback, we connect the problem to that of compression with side information that is known at the encoder and may be known at the decoder — where the most recent packets serve as side information that may have been erased, and demonstrate that the loss due to a delay by one time unit is rather small
    corecore