95 research outputs found

    Eigenvalue based SNR Estimation for Cognitive Radio in Presence of Channel Correlation

    Get PDF
    In addition to spectrum sensing capability required by a Cognitive Radio (CR), Signal to Noise Ratio (SNR) estimation of the primary signals is crucial in order to adapt its coverage area dynamically using underlay techniques. Furthermore, in practical scenarios, the fading channel may be correlated due to various causes such as insufficient scattering in the propagation path and antenna mutual coupling. In this context, we consider the SNR estimation problem for a CR in the presence of channel correlation. We study an eigenvaluebased SNR estimation technique for large-scale CR networks using asymptotic Random Matrix Theory (RMT). We carry out detailed theoretical analysis of the signal plus noise hypothesis to derive the asymptotic eigenvalue probability distribution function (a.e.p.d.f.) of the received signal’s covariance matrix in the presence of the correlated channel. Then an SNR estimation technique based on the derived a.e.p.d.f. is proposed for PU SNR in the presence of channel correlation and its performance is evaluated in terms of normalized Mean Square Error (MSE). It is shown that the PU SNR can be accurately estimated in the presence of channel correlation using the proposed technique even in low SNR region

    A Bayesian Framework for Collaborative Multi-Source Signal Detection

    Full text link
    This paper introduces a Bayesian framework to detect multiple signals embedded in noisy observations from a sensor array. For various states of knowledge on the communication channel and the noise at the receiving sensors, a marginalization procedure based on recent tools of finite random matrix theory, in conjunction with the maximum entropy principle, is used to compute the hypothesis selection criterion. Quite remarkably, explicit expressions for the Bayesian detector are derived which enable to decide on the presence of signal sources in a noisy wireless environment. The proposed Bayesian detector is shown to outperform the classical power detector when the noise power is known and provides very good performance for limited knowledge on the noise power. Simulations corroborate the theoretical results and quantify the gain achieved using the proposed Bayesian framework.Comment: 15 pages, 9 pictures, Submitted to IEEE Trans. on Signal Processin

    Contribution à la conception d'un système de radio impulsionnelle ultra large bande intelligent

    No full text
    Faced with an ever increasing demand of high data-rates and improved adaptability among existing systems, which inturn is resulting in spectrum scarcity, the development of new radio solutions becomes mandatory in order to answer the requirements of these emergent applications. Among the recent innovations in the field of wireless communications,ultra wideband (UWB) has generated significant interest. Impulse based UWB (IR-UWB) is one attractive way of realizing UWB systems, which is characterized by the transmission of sub nanoseconds UWB pulses, occupying a band width up to 7.5 GHz with extremely low power density. This large band width results in several captivating features such as low-complexity low-cost transceiver, ability to overlay existing narrowband systems, ample multipath diversity, and precise ranging at centimeter level due to extremely fine temporal resolution.In this PhD dissertation, we investigate some of the key elements in the realization of an intelligent time-hopping based IR-UWB system. Due to striking resemblance of IR-UWB inherent features with cognitive radio (CR) requirements, acognitive UWB based system is first studied. A CR in its simplest form can be described as a radio, which is aware ofits surroundings and adapts intelligently. As sensing the environment for the availability of resources and then consequently adapting radio’s internal parameters to exploit them opportunistically constitute the major blocks of any CR, we first focus on robust spectrum sensing algorithms and the design of adaptive UWB waveforms for realizing a cognitive UWB radio. The spectrum sensing module needs to function with minimum a-priori knowledge available about the operating characteristics and detect the primary users as quickly as possible. Keeping this in mind, we develop several spectrum sensing algorithms invoking recent results on the random matrix theory, which can provide efficient performance with a few number of samples. Next, we design the UWB waveform using a linear combination of Bsp lines with weight coefficients being optimized by genetic algorithms. This results in a UWB waveform that is spectrally efficient and at the same time adaptable to incorporate the cognitive radio requirements. In the 2nd part of this thesis, some research challenges related to signal processing in UWB systems, namely synchronization and dense multipath channel estimation are addressed. Several low-complexity non-data-aided (NDA) synchronization algorithms are proposed for BPSK and PSM modulations, exploiting either the orthogonality of UWB waveforms or theinherent cyclostationarity of IR-UWB signaling. Finally, we look into the channel estimation problem in UWB, whichis very demanding due to particular nature of UWB channels and at the same time very critical for the coherent Rake receivers. A method based on a joint maximum-likelihood (ML) and orthogonal subspace (OS) approaches is proposed which exhibits improved performance than both of these methods individually.Face à une demande sans cesse croissante de haut débit et d’adaptabilité des systèmes existants, qui à son tour se traduit par l’encombrement du spectre, le développement de nouvelles solutions dans le domaine des communications sans fil devient nécessaire afin de répondre aux exigences des applications émergentes. Parmi les innovations récentes dans ce domaine, l’ultra large bande (UWB) a suscité un vif intérêt. La radio impulsionnelle UWB (IR-UWB), qui est une solution intéressante pour réaliser des systèmes UWB, est caractérisée par la transmission des impulsions de très courte durée, occupant une largeur de bande allant jusqu’à 7,5 GHz, avec une densité spectrale de puissance extrêmement faible. Cette largeur de bande importante permet de réaliser plusieurs fonctionnalités intéressantes, telles que l’implémentation à faible complexité et à coût réduit, la possibilité de se superposer aux systèmes à bande étroite, la diversité spatiale et la localisation très précise de l’ordre centimétrique, en raison de la résolution temporelle très fine.Dans cette thèse, nous examinons certains éléments clés dans la réalisation d'un système IR-UWB intelligent. Nous avons tout d’abord proposé le concept de radio UWB cognitive à partir des similarités existantes entre l'IR-UWB et la radio cognitive. Dans sa définition la plus simple, un tel système est conscient de son environnement et s'y adapte intelligemment. Ainsi, nous avons tout d’abord focalisé notre recherché sur l’analyse de la disponibilité des ressources spectrales (spectrum sensing) et la conception d’une forme d’onde UWB adaptative, considérées comme deux étapes importantes dans la réalisation d'une radio cognitive UWB. Les algorithmes de spectrum sensing devraient fonctionner avec un minimum de connaissances a priori et détecter rapidement les utilisateurs primaires. Nous avons donc développé de tels algorithmes utilisant des résultats récents sur la théorie des matrices aléatoires, qui sont capables de fournir de bonnes performances, avec un petit nombre d'échantillons. Ensuite, nous avons proposé une méthode de conception de la forme d'onde UWB, vue comme une superposition de fonctions B-splines, dont les coefficients de pondération sont optimisés par des algorithmes génétiques. Il en résulte une forme d'onde UWB qui est spectralement efficace et peut s’adapter pour intégrer les contraintes liées à la radio cognitive. Dans la 2ème partie de cette thèse, nous nous sommes attaqués à deux autres problématiques importantes pour le fonctionnement des systèmes UWB, à savoir la synchronisation et l’estimation du canal UWB, qui est très dense en trajets multiples. Ainsi, nous avons proposé plusieurs algorithmes de synchronisation, de faible complexité et sans séquence d’apprentissage, pour les modulations BPSK et PSM, en exploitant l'orthogonalité des formes d'onde UWB ou la cyclostationnarité inhérente à la signalisation IR-UWB. Enfin, nous avons travaillé sur l'estimation du canal UWB, qui est un élément critique pour les récepteurs Rake cohérents. Ainsi, nous avons proposé une méthode d’estimation du canal basée sur une combinaison de deux approches complémentaires, le maximum de vraisemblance et la décomposition en sous-espaces orthogonaux,d’améliorer globalement les performances

    Enhanced Spectrum Sensing Techniques for Cognitive Radio Systems

    Get PDF
    Due to the rapid growth of new wireless communication services and applications, much attention has been directed to frequency spectrum resources. Considering the limited radio spectrum, supporting the demand for higher capacity and higher data rates is a challenging task that requires innovative technologies capable of providing new ways of exploiting the available radio spectrum. Cognitive radio (CR), which is among the core prominent technologies for the next generation of wireless communication systems, has received increasing attention and is considered a promising solution to the spectral crowding problem by introducing the notion of opportunistic spectrum usage. Spectrum sensing, which enables CRs to identify spectral holes, is a critical component in CR technology. Furthermore, improving the efficiency of the radio spectrum use through spectrum sensing and dynamic spectrum access (DSA) is one of the emerging trends. In this thesis, we focus on enhanced spectrum sensing techniques that provide performance gains with reduced computational complexity for realistic waveforms considering radio frequency (RF) impairments, such as noise uncertainty and power amplifier (PA) non-linearities. The first area of study is efficient energy detection (ED) methods for spectrum sensing under non-flat spectral characteristics, which deals with relatively simple methods for improving the detection performance. In realistic communication scenarios, the spectrum of the primary user (PU) is non-flat due to non-ideal frequency responses of the devices and frequency selective channel conditions. Weighting process with fast Fourier transform (FFT) and analysis filter bank (AFB) based multi-band sensing techniques are proposed for overcoming the challenge of non-flat characteristics. Furthermore, a sliding window based spectrum sensing approach is addressed to detect a re-appearing PU that is absent in one time and present in other time. Finally, the area under the receiver operating characteristics curve (AUC) is considered as a single-parameter performance metric and is derived for all the considered scenarios. The second area of study is reduced complexity energy and eigenvalue based spectrum sensing techniques utilizing frequency selectivity. More specifically, novel spectrum sensing techniques, which have relatively low computational complexity and are capable of providing accurate and robust performance in low signal-to-noise ratio (SNR) with noise uncertainty, as well as in the presence of frequency selectivity, are proposed. Closed-form expressions are derived for the corresponding probability of false alarm and probability of detection under frequency selectivity due the primary signal spectrum and/or the transmission channel. The offered results indicate that the proposed methods provide quite significant saving in complexity, e.g., 78% reduction in the studied example case, whereas their detection performance is improved both in the low SNR and under noise uncertainty. Finally, a new combined spectrum sensing and resource allocation approach for multicarrier radio systems is proposed. The main contribution of this study is the evaluation of the CR performance when using wideband spectrum sensing methods in combination with water-filling and power interference (PI) based resource allocation algorithms in realistic CR scenarios. Different waveforms, such as cyclic prefix based orthogonal frequency division multiplexing (CP-OFDM), enhanced orthogonal frequency division multiplexing (E-OFDM) and filter bank based multicarrier (FBMC), are considered with PA nonlinearity type RF impairments to see the effects of spectral leakage on the spectrum sensing and resource allocation performance. It is shown that AFB based spectrum sensing techniques and FBMC waveforms with excellent spectral containment properties have clearly better performance compared to the traditional FFT based spectrum sensing techniques with the CP-OFDM. Overall, the investigations in this thesis provide novel spectrum sensing techniques for overcoming the challenge of noise uncertainty with reduced computational complexity. The proposed methods are evaluated under realistic signal models

    Reliable detection of transmit-antenna number for MIMO systems in cognitive radio-enabled Internet of Things

    Get PDF
    Identification of transmit-antenna number is of importance in cognitive Internet of Things with multiple-input multiple-output (MIMO). Previous studies on transmit-antenna number detection only consider Gaussian noise and ignore impulsive interference. In the practical wireless communication, impulsive interference may exist due to low-frequency atmospheric noise, multiple access and electromagnetic disturbance. Such interference can usually be modeled as symmetric alpha stable (SαS), which cause the performance degradation of conventional algorithms based on Gaussian model. In this paper, we present a novel scheme to detect the transmit-antenna number for MIMO systems in cognitive Internet of Things, assuming that signals are corrupted by both SαS interference and Gaussian noise. We first introduce a new approach to characterize the generalized correlation matrix, and provide its bound with SαS interference. Then, the discriminating feature vector is constructed by utilizing the higher-order moments (HOM) of eigenvalues of the generalized correlation matrix. Finally, an advanced clustering algorithm is employed to detect the transmit-antenna number, using the cluster where the minimum eigenvalue is located. The proposed algorithm avoids the need for a priori information about the transmitted signals, such as coding mode, modulation type and pilot patterns. Simulation experiments demonstrate the feasibility of the proposed transmit-antenna number detection scheme in MIMO systems with Gaussian noise and SαS interference
    corecore