175 research outputs found

    A Novel Mobile WiMAX Solution for Higher Throughput

    Get PDF
    The IEEE 802.16 standard, also known as WiMAX, has emerged as an exciting technology for broadband wireless communications with potentials to offer high throughput and support high bandwidth demanding applications. WiMAX, however, has yet to prove its effectiveness when the end terminals are not fixed and have the capacity to move from one place to another at different speeds. Recent studies suggest that while WiMAX (802.16e) has the potential to deliver a data rate up to 75 Mb/s for fixed wireless communications, it fails drastically for mobile wireless communications, often providing a data rate less than 1 Mb/s when the mobile nodes travel at high speeds, which offers a huge challenge for QoS management. Multipath fading that causes high bit error rate at the receiver end is a key reason for low throughput at high speed. Bit error rate and maximum packet size determine the packet error rate, and error recovery for higher number of corrupted packets is not always an attractive option for many real-time applications with delay and jitter constraints. In this paper, we propose a mathematical model to estimate the bit error probability when the mobile station travels at different speeds. The estimated value of bit error probability is then taken into account to proactively compute the appropriate maximum packet size that offers the best chance to achieve improved throughput at different operating conditions. We simulated the proposed scheme for a centralized video surveillance system in a public train where the train is the mobile node and sends real-time video data to the base stations. The results show that the proposed scheme achieves significantly higher throughput and lower jitter compared to other standard schemes

    Throughput analysis of nonbinary type-II hybrid ARQ

    Get PDF
    Nonbinary type-II hybrid ARQ (HARQ), which combines shortened Reed-Solomon (RS) code with ARQ, is proposed. Its throughput is obtained by extending Lin and Yu's analysis of binary type-II HARQ. Analytical results show that nonbinary HARQ outperforms its binary counterpart in throughput over Rayleigh fading channels when the modulation scheme and the FEC subsystem are selected properly. © 2003 IEEE.published_or_final_versio

    Reducing Internet Latency : A Survey of Techniques and their Merit

    Get PDF
    Bob Briscoe, Anna Brunstrom, Andreas Petlund, David Hayes, David Ros, Ing-Jyh Tsang, Stein Gjessing, Gorry Fairhurst, Carsten Griwodz, Michael WelzlPeer reviewedPreprin

    A novel mobile WiMAX solution for higher throughput

    Get PDF
    The IEEE 802.16 standard, also known as WiMAX, has emerged as an exciting technology for broadband wireless communications with potentials to offer high throughput and support high bandwidth demanding applications. WiMAX, however, has yet to prove its effectiveness when the end terminals are not fixed and have the capacity to move from one place to another at different speeds. Recent studies suggest that while WiMAX (802.16e) has the potential to deliver a data rate up to 75 Mb/s for fixed wireless communications, it fails drastically for mobile wireless communications, often providing a data rate less than 1 Mb/s when the mobile nodes travel at high speeds, which offers a huge challenge for QoS management. Multipath fading that causes high bit error rate at the receiver end is a key reason for low throughput at high speed. Bit error rate and maximum packet size determine the packet error rate, and error recovery for higher number of corrupted packets is not always an attractive option for many real-time applications with delay and jitter constraints. In this paper, we propose a mathematical model to estimate the bit error probability when the mobile station travels at different speeds. The estimated value of bit error probability is then taken into account to proactively compute the appropriate maximum packet size that offers the best chance to achieve improved throughput at different operating conditions. We simulated the proposed scheme for a centralized video surveillance system in a public train where the train is the mobile node and sends real-time video data to the base stations. The results show that the proposed scheme achieves significantly higher throughput and lower jitter compared to other standard schemes

    High Utility Video Surveillance System on Public Transport using WiMAX technology

    Get PDF
    Video surveillance on public transport is a useful tool to fight against anti-social behaviour like vandalism, harassment, graffiti and terrorism. Real-time video surveillance on moving public transport faces serious technological challenges mainly due to limited throughput offered by existing communication technologies at high vehicular speeds. Success of real-time video surveillance on public transport heavily depends on future communication technologies like WiMAX. WiMAX has emerged as an exciting technology with promises to offer high throughput and improved quality of services (QoS), key requirements for video surveillance on public transport. WiMAX however, offers limited throughput at high vehicular speeds mainly because of multipath fading that causes high bit error rate at the receiver at vehicular speeds. In our previous works, we showed that it is possible to estimate the bit error rate at the receiver end at various vehicular speeds in WiMAX and accordingly, some proactive measures can be adopted to improve the throughput to some extents. Overall throughput however, may still be insufficient to support the streaming video data from all the cameras mounted on a public transport at high vehicular speeds. In this paper, we propose a new scheme that estimates utility for different cameras and puts some low utility cameras offline and thereby maintains high utility of the video surveillance system when the throughput at high vehicular speeds become insufficient. Simulation results confirm the effectiveness of the proposed scheme

    Modeling and Evaluating Feedback-Based Error Control for Video Transfer

    Get PDF
    Packet loss can be detrimental to real-time interactive video over lossy networks because one lost video packet can propagate errors to many subsequent video frames due to the encoding dependency between frames. Feedback-based error control techniques use feedback information from the decoder to adjust coding parameters at the encoder or retransmit lost packets to reduce the error propagation due to data loss. Feedback-based error control techniques have been shown to be more effective than trying to conceal the error at the encoder or decoder alone since they allow the encoder and decoder to cooperate in the error control process. However, there has been no systematic exploration of the impact of video content and network conditions on the performance of feedback-based error control techniques. In particular, the impact of packet loss, round-trip delay, network capacity constraint, video motion and reference distance on the quality of videos using feedback-based error control techniques have not been systematically studied. This thesis presents analytical models for the major feedback-based error control techniques: Retransmission, Reference Picture Selection (both NACK and ACK modes) and Intra Update. These feedback-based error control techniques have been included in H.263/H.264 and MPEG4, the state of the art video in compression standards. Given a round-trip time, packet loss rate, network capacity constraint, our models can predict the quality for a streaming video with retransmission, Intra Update and RPS over a lossy network. In order to exploit our analytical models, a series of studies has been conducted to explore the effect of reference distance, capacity constraint and Intra coding on video quality. The accuracy of our analytical models in predicting the video quality under different network conditions is validated through simulations. These models are used to examine the behavior of feedback-based error control schemes under a variety of network conditions and video content through a series of analytic experiments. Analysis shows that the performance of feedback-based error control techniques is affected by a variety of factors including round-trip time, loss rate, video content and the Group of Pictures (GOP) length. In particular: 1) RPS NACK achieves the best performance when loss rate is low while RPS ACK outperforms other repair techniques when loss rate is high. However RPS ACK performs the worst when loss rate is low. Retransmission performs the worst when the loss rate is high; 2) for a given round-trip time, the loss rate where RPS NACK performs worse than RPS ACK is higher for low motion videos than it is for high motion videos; 3) Videos with RPS NACK always perform the same or better than videos without repair. However, when small GOP sizes are used, videos without repair perform better than videos with RPS ACK; 4) RPS NACK outperform Intra Update for low-motion videos. However, the performance gap between RPS NACK and Intra Update drops when the round-trip time or the intensity of video motion increases. 5) Although the above trends hold for both VQM and PSNR, when VQM is the video quality metric the performance results are much more sensitive to network loss. 6) Retransmission is effective only when the round-trip time is low. When the round-trip time is high, Partial Retransmission achieves almost the same performance as Full Retransmission. These insights derived from our models can help determine appropriate choices for feedback-based error control techniques under various network conditions and video content
    • …
    corecore