292 research outputs found

    Non-linear echo cancellation - a Bayesian approach

    Get PDF
    Echo cancellation literature is reviewed, then a Bayesian model is introduced and it is shown how how it can be used to model and fit nonlinear channels. An algorithm for cancellation of echo over a nonlinear channel is developed and tested. It is shown that this nonlinear algorithm converges for both linear and nonlinear channels and is superior to linear echo cancellation for canceling an echo through a nonlinear echo-path channel

    Bit error rate estimation in WiMAX communications at vehicular speeds using Nakagami-m fading model

    Get PDF
    The wireless communication industry has experienced a rapid technological evolution from its basic first generation (1G) wireless systems to the latest fourth generation (4G) wireless broadband systems. Wireless broadband systems are becoming increasingly popular with consumers and the technological strength of 4G has played a major role behind the success of wireless broadband systems. The IEEE 802.16m standard of the Worldwide Interoperability for Microwave Access (WiMAX) has been accepted as a 4G standard by the Institute of Electrical and Electronics Engineers in 2011. The IEEE 802.16m is fully optimised for wireless communications in fixed environments and can deliver very high throughput and excellent quality of service. In mobile communication environments however, WiMAX consumers experience a graceful degradation of service as a direct function of vehicular speeds. At high vehicular speeds, the throughput drops in WiMAX systems and unless proactive measures such as forward error control and packet size optimisation are adopted and properly adjusted, many applications cannot be facilitated at high vehicular speeds in WiMAX communications. For any proactive measure, bit error rate estimation as a function of vehicular speed, serves as a useful tool. In this thesis, we present an analytical model for bit error rate estimation in WiMAX communications using the Nakagami-m fading model. We also show, through an analysis of the data collected from a practical WiMAX system, that the Nakagami-m model can be made adaptive as a function of speed, to represent fading in fixed environments as well as mobile environments

    Unequal error protection for power line communications over impulsive noise channels

    Get PDF
    Power line communication (PLC) has recently attracted a lot of interest with many application areas including smart grids\u27 data communication, where data (from sensors or other measurement units) with different QoS may be transmitted. Power line communications suffer from the excessive power lines\u27 impulsive noise (which can be caused by shedding loads on and off). In this thesis, we present a study of power line communications with unequal error protection for two and four data priority levels hierarchical QAM modulation and space-time block coding. We consider the two commonly used power lines\u27 impulsive noise models with Bernoulli and Poisson arrivals. In our proposed approaches, we achieve UEP on both of bit and symbol levels. Approximate closed form expressions for the error rates are derived for each priority level for both single carrier and OFDM in SISO and MIMO systems. In addition, these simpli fied expressions are used to implement a bit loading algorithm to provide UEP for frequency-selective PLC channels. For the case of MIMO PLC channels, we describe three different MIMO schemes to allow more control over the UEP levels. The three schemes are namely: maximum ratio combiner (MRC) receive diversity, Alamouti space-time block code, and a new structure for a space-time code that allows for unequal error protection at the symbol level. Finally, we apply an Eigen beamforming technique, assuming channel knowledge at transmitter, which improves the BER as compared to the other MIMO PLC schemes

    Video QoS/QoE over IEEE802.11n/ac: A Contemporary Survey

    Get PDF
    The demand for video applications over wireless networks has tremendously increased, and IEEE 802.11 standards have provided higher support for video transmission. However, providing Quality of Service (QoS) and Quality of Experience (QoE) for video over WLAN is still a challenge due to the error sensitivity of compressed video and dynamic channels. This thesis presents a contemporary survey study on video QoS/QoE over WLAN issues and solutions. The objective of the study is to provide an overview of the issues by conducting a background study on the video codecs and their features and characteristics, followed by studying QoS and QoE support in IEEE 802.11 standards. Since IEEE 802.11n is the current standard that is mostly deployed worldwide and IEEE 802.11ac is the upcoming standard, this survey study aims to investigate the most recent video QoS/QoE solutions based on these two standards. The solutions are divided into two broad categories, academic solutions, and vendor solutions. Academic solutions are mostly based on three main layers, namely Application, Media Access Control (MAC) and Physical (PHY) which are further divided into two major categories, single-layer solutions, and cross-layer solutions. Single-layer solutions are those which focus on a single layer to enhance the video transmission performance over WLAN. Cross-layer solutions involve two or more layers to provide a single QoS solution for video over WLAN. This thesis has also presented and technically analyzed QoS solutions by three popular vendors. This thesis concludes that single-layer solutions are not directly related to video QoS/QoE, and cross-layer solutions are performing better than single-layer solutions, but they are much more complicated and not easy to be implemented. Most vendors rely on their network infrastructure to provide QoS for multimedia applications. They have their techniques and mechanisms, but the concept of providing QoS/QoE for video is almost the same because they are using the same standards and rely on Wi-Fi Multimedia (WMM) to provide QoS
    • …
    corecore