5,728 research outputs found

    Coverage Protocols for Wireless Sensor Networks: Review and Future Directions

    Full text link
    The coverage problem in wireless sensor networks (WSNs) can be generally defined as a measure of how effectively a network field is monitored by its sensor nodes. This problem has attracted a lot of interest over the years and as a result, many coverage protocols were proposed. In this survey, we first propose a taxonomy for classifying coverage protocols in WSNs. Then, we classify the coverage protocols into three categories (i.e. coverage aware deployment protocols, sleep scheduling protocols for flat networks, and cluster-based sleep scheduling protocols) based on the network stage where the coverage is optimized. For each category, relevant protocols are thoroughly reviewed and classified based on the adopted coverage techniques. Finally, we discuss open issues (and recommend future directions to resolve them) associated with the design of realistic coverage protocols. Issues such as realistic sensing models, realistic energy consumption models, realistic connectivity models and sensor localization are covered

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    The crowd as a cameraman : on-stage display of crowdsourced mobile video at large-scale events

    Get PDF
    Recording videos with smartphones at large-scale events such as concerts and festivals is very common nowadays. These videos register the atmosphere of the event as it is experienced by the crowd and offer a perspective that is hard to capture by the professional cameras installed throughout the venue. In this article, we present a framework to collect videos from smartphones in the public and blend these into a mosaic that can be readily mixed with professional camera footage and shown on displays during the event. The video upload is prioritized by matching requests of the event director with video metadata, while taking into account the available wireless network capacity. The proposed framework's main novelty is its scalability, supporting the real-time transmission, processing and display of videos recorded by hundreds of simultaneous users in ultra-dense Wi-Fi environments, as well as its proven integration in commercial production environments. The framework has been extensively validated in a controlled lab setting with up to 1 000 clients as well as in a field trial where 1 183 videos were collected from 135 participants recruited from an audience of 8 050 people. 90 % of those videos were uploaded within 6.8 minutes

    Coverage and Connectivity in Three-Dimensional Networks

    Full text link
    Most wireless terrestrial networks are designed based on the assumption that the nodes are deployed on a two-dimensional (2D) plane. However, this 2D assumption is not valid in underwater, atmospheric, or space communications. In fact, recent interest in underwater acoustic ad hoc and sensor networks hints at the need to understand how to design networks in 3D. Unfortunately, the design of 3D networks is surprisingly more difficult than the design of 2D networks. For example, proofs of Kelvin's conjecture and Kepler's conjecture required centuries of research to achieve breakthroughs, whereas their 2D counterparts are trivial to solve. In this paper, we consider the coverage and connectivity issues of 3D networks, where the goal is to find a node placement strategy with 100% sensing coverage of a 3D space, while minimizing the number of nodes required for surveillance. Our results indicate that the use of the Voronoi tessellation of 3D space to create truncated octahedral cells results in the best strategy. In this truncated octahedron placement strategy, the transmission range must be at least 1.7889 times the sensing range in order to maintain connectivity among nodes. If the transmission range is between 1.4142 and 1.7889 times the sensing range, then a hexagonal prism placement strategy or a rhombic dodecahedron placement strategy should be used. Although the required number of nodes in the hexagonal prism and the rhombic dodecahedron placement strategies is the same, this number is 43.25% higher than the number of nodes required by the truncated octahedron placement strategy. We verify by simulation that our placement strategies indeed guarantee ubiquitous coverage. We believe that our approach and our results presented in this paper could be used for extending the processes of 2D network design to 3D networks.Comment: To appear in ACM Mobicom 200

    Perimeter coverage scheduling in wireless sensor networks using sensors with a single continuous cover range

    Get PDF
    In target monitoring problem, it is generally assumed that the whole target object can be monitored by a single sensor if the target falls within its sensing range. Unfortunately, this assumption becomes invalid when the target object is very large that a sensor can only monitor part of it. In this paper, we study the perimeter coverage problem where the perimeter of a big object needs to be monitored, but each sensor can only cover a single continuous portion of the perimeter. We describe how to schedule the sensors so as to maximize the network lifetime in this problem. We formally prove that the perimeter coverage scheduling problem is NP-hard in general. However, polynomial time solution exists in some special cases. We further identify the sufficient conditions for a scheduling algorithm to be a 2-approximation solution to the general problem, and propose a simple distributed 2-approximation solution with a small message overhead. Copyright © 2010 K.-S. Hung and K.-S. Lui.published_or_final_versio
    corecore