1,807 research outputs found

    Monitoring Animal Behaviour and Environmental Interactions Using Wireless Sensor Networks, GPS Collars and Satellite Remote Sensing

    Get PDF
    Remote monitoring of animal behaviour in the environment can assist in managing both the animal and its environmental impact. GPS collars which record animal locations with high temporal frequency allow researchers to monitor both animal behaviour and interactions with the environment. These ground-based sensors can be combined with remotely-sensed satellite images to understand animal-landscape interactions. The key to combining these technologies is communication methods such as wireless sensor networks (WSNs). We explore this concept using a case-study from an extensive cattle enterprise in northern Australia and demonstrate the potential for combining GPS collars and satellite images in a WSN to monitor behavioural preferences and social behaviour of cattle

    A wireless method for monitoring medication compliance

    Get PDF
    There are many devices on the market to help remind patients to take their pills, but most require observation by a caregiver to assure medication compliance. This project demonstrates three modes to detect pill removal from a pillbox: a switch under the pills, a reflective type photointerrupter and a transmissive electric eye photosensor. Each mode exhibited blind spots or other failures to detect pill presence, but by combining modes with complementary characteristics, the accuracy of pill detection is greatly increased. Two methods of caregiver notification are demonstrated: text messages transmitted via an attached cellular phone, or the status is collected by a PC which provides an audit trail and daily notification if no pills were taken

    Strengthening Privacy and Data Security in Biomedical Microelectromechanical Systems by IoT Communication Security and Protection in Smart Healthcare.

    Get PDF
    Biomedical Microelectromechanical Systems (BioMEMS) serve as a crucial catalyst in enhancing IoT communication security and safeguarding smart healthcare systems. Situated at the nexus of advanced technology and healthcare, BioMEMS are instrumental in pioneering personalized diagnostics, monitoring, and therapeutic applications. Nonetheless, this integration brings forth a complex array of security and privacy challenges intrinsic to IoT communications within smart healthcare ecosystems, demanding comprehensive scrutiny. In this manuscript, we embark on an extensive analysis of the intricate security terrain associated with IoT communications in the realm of BioMEMS, addressing a spectrum of vulnerabilities that spans cyber threats, data manipulation, and interception of communications. The integration of real-world case studies serves to illuminate the direct repercussions of security breaches within smart healthcare systems, highlighting the imperative to safeguard both patient safety and the integrity of medical data. We delve into a suite of security solutions, encompassing rigorous authentication processes, data encryption, designs resistant to attacks, and continuous monitoring mechanisms, all tailored to fortify BioMEMS in the face of ever-evolving threats within smart healthcare environments. Furthermore, the paper underscores the vital role of ethical and regulatory considerations, emphasizing the need to uphold patient autonomy, ensure the confidentiality of data, and maintain equitable access to healthcare in the context of IoT communication security. Looking forward, we explore the impending landscape of BioMEMS security as it intertwines with emerging technologies such as AI-driven diagnostics, quantum computing, and genomic integration, anticipating potential challenges and strategizing for the future. In doing so, this paper highlights the paramount importance of adopting an integrated approach that seamlessly blends technological innovation, ethical foresight, and collaborative ingenuity, thereby steering BioMEMS towards a secure and resilient future within smart healthcare systems, in the ambit of IoT communication security and protection

    Towards the Internet of Smart Trains: A Review on Industrial IoT-Connected Railways

    Get PDF
    [Abstract] Nowadays, the railway industry is in a position where it is able to exploit the opportunities created by the IIoT (Industrial Internet of Things) and enabling communication technologies under the paradigm of Internet of Trains. This review details the evolution of communication technologies since the deployment of GSM-R, describing the main alternatives and how railway requirements, specifications and recommendations have evolved over time. The advantages of the latest generation of broadband communication systems (e.g., LTE, 5G, IEEE 802.11ad) and the emergence of Wireless Sensor Networks (WSNs) for the railway environment are also explained together with the strategic roadmap to ensure a smooth migration from GSM-R. Furthermore, this survey focuses on providing a holistic approach, identifying scenarios and architectures where railways could leverage better commercial IIoT capabilities. After reviewing the main industrial developments, short and medium-term IIoT-enabled services for smart railways are evaluated. Then, it is analyzed the latest research on predictive maintenance, smart infrastructure, advanced monitoring of assets, video surveillance systems, railway operations, Passenger and Freight Information Systems (PIS/FIS), train control systems, safety assurance, signaling systems, cyber security and energy efficiency. Overall, it can be stated that the aim of this article is to provide a detailed examination of the state-of-the-art of different technologies and services that will revolutionize the railway industry and will allow for confronting today challenges.Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; ED431C 2016-045Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; ED341D R2016/012Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; ED431G/01Agencia Estatal de Investigación (España); TEC2013-47141-C4-1-RAgencia Estatal de Investigación (España); TEC2015-69648-REDCAgencia Estatal de Investigación (España); TEC2016-75067-C4-1-

    Envisioning patient safety in Telehealth: a research perspective

    Get PDF
    This article explores the need for research into patient safety in large-scale Telehealth systems faced with the perspective of its development extended to healthcare systems. Telehealth systems give rise to significant advantages in improving the quality of healthcare services as well as bringing about the possibility of new types of risk. A theoretical framework is proposed for patient safety for its approach as an emerging property in complex socio-technical systems (CSTS) and their modelling in layers. As regards this framework, the differential characteristic Telehealth elements of the system have been identified, with a greater emphasis on the level of Telehealth system and its typical subsystems. The bases of the analysis are based on references in the literature and the experience accumulated by the researchers in the area. In particular, a case describing an example of Telehealth to control patients undergoing treatment with oral anticoagulants is used. As a result, a series of areas of research into and topics regarding Telehealth patient safety are proposed to cover the detectable gaps. Both the theoretical and practical implications of the study are discussed and future perspectives are reflected on.This research has been partially supported by grants FISPI09-90110 ‘Innovation Platform in new services based on telemedicine and e-health for chronic and dependent patients -PITES’ from the Ministry of Health & Consumer Affairs; and FISPI13-00508 ‘Innovation platform in new services based on Telemedicine and e- Health: definition, design and development of tools for interoperability, patient safety and support to decision (PITES-ISA)’ from the Ministry of Economy and Competitiveness (Secretary of State of Research, Development and Innovation). The funders had no role in the study, decision to publish, or drafting of the manuscript.S

    Bio-Nanotechology: A Human Attack Vector

    Get PDF
    At present, humans could be direct targets of hacked bio- or nanotechnologies. This paper describes the future of biotechnology and nanotechnology, focusing on smart motes and bio-engineered products based on genome mapping. Then threats from these emerging technologies are developed to show different attack potentials. Finally, alternative development activities are proposed that mitigate the risks posed to humans
    • …
    corecore