115 research outputs found

    Synoptic analysis techniques for intrusion detection in wireless networks

    Get PDF
    Current system administrators are missing intrusion alerts hidden by large numbers of false positives. Rather than accumulation more data to identify true alerts, we propose an intrusion detection tool that e?ectively uses select data to provide a picture of ?network health?. Our hypothesis is that by utilizing the data available at both the node and cooperative network levels we can create a synoptic picture of the network providing indications of many intrusions or other network issues. Our major contribution is to provide a revolutionary way to analyze node and network data for patterns, dependence, and e?ects that indicate network issues. We collect node and network data, combine and manipulate it, and tease out information about the state of the network. We present a method based on utilizing the number of packets sent, number of packets received, node reliability, route reliability, and entropy to develop a synoptic picture of the network health in the presence of a sinkhole and a HELLO Flood attacker. This method conserves network throughput and node energy by requiring no additional control messages to be sent between the nodes unless an attacker is suspected. We intend to show that, although the concept of an intrusion detection system is not revolutionary, the method in which we analyze the data for clues about network intrusion and performance is highly innovative

    Collaboration Enforcement In Mobile Ad Hoc Networks

    Get PDF
    Mobile Ad hoc NETworks (MANETs) have attracted great research interest in recent years. Among many issues, lack of motivation for participating nodes to collaborate forms a major obstacle to the adoption of MANETs. Many contemporary collaboration enforcement techniques employ reputation mechanisms for nodes to avoid and penalize malicious participants. Reputation information is propagated among participants and updated based on complicated trust relationships to thwart false accusation of benign nodes. The aforementioned strategy suffers from low scalability and is likely to be exploited by adversaries. To address these problems, we first propose a finite state model. With this technique, no reputation information is propagated in the network and malicious nodes cannot cause false penalty to benign hosts. Misbehaving node detection is performed on-demand; and malicious node punishment and avoidance are accomplished by only maintaining reputation information within neighboring nodes. This scheme, however, requires that each node equip with a tamper-proof hardware. In the second technique, no such restriction applies. Participating nodes classify their one-hop neighbors through direct observation and misbehaving nodes are penalized within their localities. Data packets are dynamically rerouted to circumvent selfish nodes. In both schemes, overall network performance is greatly enhanced. Our approach significantly simplifies the collaboration enforcement process, incurs low overhead, and is robust against various malicious behaviors. Simulation results based on different system configurations indicate that the proposed technique can significantly improve network performance with very low communication cost

    An Outline of Security in Wireless Sensor Networks: Threats, Countermeasures and Implementations

    Full text link
    With the expansion of wireless sensor networks (WSNs), the need for securing the data flow through these networks is increasing. These sensor networks allow for easy-to-apply and flexible installations which have enabled them to be used for numerous applications. Due to these properties, they face distinct information security threats. Security of the data flowing through across networks provides the researchers with an interesting and intriguing potential for research. Design of these networks to ensure the protection of data faces the constraints of limited power and processing resources. We provide the basics of wireless sensor network security to help the researchers and engineers in better understanding of this applications field. In this chapter, we will provide the basics of information security with special emphasis on WSNs. The chapter will also give an overview of the information security requirements in these networks. Threats to the security of data in WSNs and some of their counter measures are also presented

    Improved QoS and avoidance of black hole attacks in MANET using trust detection framework

    Get PDF
    In recent times, secured routing is a major research in MANETs. The behaviour of malicious nodes in this network increases the risk of threats and induces abnormal operations in MANETs. This affects the security of data transmitted between the nodes in the network. Hence, an effective technique is needed to prevent the abnormal nodes after the process of detection. In this paper, we propose an improved Trust Detection Algorithm to increase the probability of detection and prevention of Black Hole nodes in MANETs. The proposed framework observes the behaviour of each node using various trust metrics that includes the relationship between the sensor nodes, social and service attribute trust and QoS metric trusts. The behaviour of sensor nodes is found through the communication and mobility behaviour of each node. This method avoids the black hole nodes in MANETs, when the routing is carried out with Zone Routing Protocol (ZRP). Hence, the privacy of data is retained using the proposed method. The proposed method is tested in terms of different combinations of with and without trusts. The result shows that the proposed method is effective through various QoS metrics like overall throughput, packet loss, energy consumption, trust level, false acceptance rate and missed detection rate

    Study of Performance of Security Protocols in Wireless Mesh Network

    Get PDF
    Wireless Mesh Networks (WMNs) represent a good solution to providing wireless Internet connectivity in a sizable geographic area; this new and promising paradigm allows for network deployment at a much lower cost than with classic WiFi networks. Standards-based wireless access takes advantage of the growing popularity of inexpensive Wi-Fi clients,enabling new service opportunities and applications that improve user productivity and responsiveness. The deployment of WMNs, are suffered by : (i) All, the communications being wireless and therefore prone to interference, present severe capacity and delay constraints, (ii) The second reason that slows down the deployment of WMNs is the lack of security guarantees. Wireless mesh networks mostly susceptible to routing protocol threats and route disruption attacks. Most of these threats require packet injection with a specialized knowledge of the routing protocol; the threats to wireless mesh networks and are summarized as (i) External attacks: in which attackers not belonging to the network jam the communication or inject erroneous information, and (ii) Internal attacks: in which attackers are internal, compromised nodes that are difficult to be detected. The MAC layers of WMN are subjected to the attacks like Eavesdropping, Link Layer Jamming Attack, MAC Spoofing Attack, and Replay Attack. The attacks in Network Layer are: Control Plane Attacks, Data Plane Attacks, Rushing attack, Wormhole attack, and Black Hole Attack. In this project work we are concern with the threats related to Network layer of WMN based upon 802.11i and analysis the performance of secure routing protocols and their performance against the intrusion detection

    A Taxonomy on Misbehaving Nodes in Delay Tolerant Networks

    Get PDF
    Delay Tolerant Networks (DTNs) are type of Intermittently Connected Networks (ICNs) featured by long delay, intermittent connectivity, asymmetric data rates and high error rates. DTNs have been primarily developed for InterPlanetary Networks (IPNs), however, have shown promising potential in challenged networks i.e. DakNet, ZebraNet, KioskNet and WiderNet. Due to unique nature of intermittent connectivity and long delay, DTNs face challenges in routing, key management, privacy, fragmentation and misbehaving nodes. Here, misbehaving nodes i.e. malicious and selfish nodes launch various attacks including flood, packet drop and fake packets attack, inevitably overuse scarce resources (e.g., buffer and bandwidth) in DTNs. The focus of this survey is on a review of misbehaving node attacks, and detection algorithms. We firstly classify various of attacks depending on the type of misbehaving nodes. Then, detection algorithms for these misbehaving nodes are categorized depending on preventive and detective based features. The panoramic view on misbehaving nodes and detection algorithms are further analyzed, evaluated mathematically through a number of performance metrics. Future directions guiding this topic are also presented
    corecore