2,169 research outputs found

    3D UAV Trajectory and Communication Design for Simultaneous Uplink and Downlink Transmission

    Get PDF
    In this paper, we investigate the unmanned aerial vehicle (UAV)-Aided simultaneous uplink and downlink transmission networks, where one UAV acting as a disseminator is connected to multiple access points (AP), and the other UAV acting as a base station (BS) collects data from numerous sensor nodes (SNs). The goal of this paper is to maximize the system throughput by jointly optimizing the 3D UAV trajectory, communication scheduling, and UAV-AP/SN transmit power. We first consider a special case where the UAV-BS and UAV-AP trajectories are pre-determined. Although the resulting problem is an integer and non-convex optimization problem, a globally optimal solution is obtained by applying the polyblock outer approximation (POA) method based on the problem's hidden monotonic structure. Subsequently, for the general case considering the 3D UAV trajectory optimization, an efficient iterative algorithm is proposed to alternately optimize the divided sub-problems based on the successive convex approximation (SCA) technique. Numerical results demonstrate that the proposed design is able to achieve significant system throughput gain over the benchmarks. In addition, the SCA-based method can achieve nearly the same performance as the POA-based method with much lower computational complexity

    Optimization and Communication in UAV Networks

    Get PDF
    UAVs are becoming a reality and attract increasing attention. They can be remotely controlled or completely autonomous and be used alone or as a fleet and in a large set of applications. They are constrained by hardware since they cannot be too heavy and rely on batteries. Their use still raises a large set of exciting new challenges in terms of trajectory optimization and positioning when they are used alone or in cooperation, and communication when they evolve in swarm, to name but a few examples. This book presents some new original contributions regarding UAV or UAV swarm optimization and communication aspects

    Communication and Control in Collaborative UAVs: Recent Advances and Future Trends

    Full text link
    The recent progress in unmanned aerial vehicles (UAV) technology has significantly advanced UAV-based applications for military, civil, and commercial domains. Nevertheless, the challenges of establishing high-speed communication links, flexible control strategies, and developing efficient collaborative decision-making algorithms for a swarm of UAVs limit their autonomy, robustness, and reliability. Thus, a growing focus has been witnessed on collaborative communication to allow a swarm of UAVs to coordinate and communicate autonomously for the cooperative completion of tasks in a short time with improved efficiency and reliability. This work presents a comprehensive review of collaborative communication in a multi-UAV system. We thoroughly discuss the characteristics of intelligent UAVs and their communication and control requirements for autonomous collaboration and coordination. Moreover, we review various UAV collaboration tasks, summarize the applications of UAV swarm networks for dense urban environments and present the use case scenarios to highlight the current developments of UAV-based applications in various domains. Finally, we identify several exciting future research direction that needs attention for advancing the research in collaborative UAVs

    Uav-assisted data collection in wireless sensor networks: A comprehensive survey

    Get PDF
    Wireless sensor networks (WSNs) are usually deployed to different areas of interest to sense phenomena, process sensed data, and take actions accordingly. The networks are integrated with many advanced technologies to be able to fulfill their tasks that is becoming more and more complicated. These networks tend to connect to multimedia networks and to process huge data over long distances. Due to the limited resources of static sensor nodes, WSNs need to cooperate with mobile robots such as unmanned ground vehicles (UGVs), or unmanned aerial vehicles (UAVs) in their developments. The mobile devices show their maneuverability, computational and energystorage abilities to support WSNs in multimedia networks. This paper addresses a comprehensive survey of almost scenarios utilizing UAVs and UGVs with strogly emphasising on UAVs for data collection in WSNs. Either UGVs or UAVs can collect data from static sensor nodes in the monitoring fields. UAVs can either work alone to collect data or can cooperate with other UAVs to increase their coverage in their working fields. Different techniques to support the UAVs are addressed in this survey. Communication links, control algorithms, network structures and different mechanisms are provided and compared. Energy consumption or transportation cost for such scenarios are considered. Opening issues and challenges are provided and suggested for the future developments
    • …
    corecore