8,726 research outputs found

    Optimal Power Control and Scheduling under Hard Deadline Constraints for Continuous Fading Channels

    Full text link
    We consider a joint scheduling-and-power-allocation problem of a downlink cellular system. The system consists of two groups of users: real-time (RT) and non-real-time (NRT) users. Given an average power constraint on the base station, the problem is to find an algorithm that satisfies the RT hard deadline constraint and NRT queue stability constraint. We propose a sum-rate-maximizing algorithm that satisfies these constraints. We also show, through simulations, that the proposed algorithm has an average complexity that is close-to-linear in the number of RT users. The power allocation policy in the proposed algorithm has a closed-form expression for the two groups of users. However, interestingly, the power policy of the RT users differ in structure from that of the NRT users. We also show the superiority of the proposed algorithms over existing approaches using extensive simulations.Comment: Submitted to Asilomar 2017. arXiv admin note: text overlap with arXiv:1612.0832

    A Distributed Scheduling Algorithm to Provide Quality-of-Service in Multihop Wireless Networks

    Full text link
    Control of multihop Wireless networks in a distributed manner while providing end-to-end delay requirements for different flows, is a challenging problem. Using the notions of Draining Time and Discrete Review from the theory of fluid limits of queues, an algorithm that meets delay requirements to various flows in a network is constructed. The algorithm involves an optimization which is implemented in a cyclic distributed manner across nodes by using the technique of iterative gradient ascent, with minimal information exchange between nodes. The algorithm uses time varying weights to give priority to flows. The performance of the algorithm is studied in a network with interference modelled by independent sets
    • …
    corecore