170 research outputs found

    Energy Management in RFID-Sensor Networks: Taxonomy and Challenges

    Get PDF
    Ubiquitous Computing is foreseen to play an important role for data production and network connectivity in the coming decades. The Internet of Things (IoT) research which has the capability to encapsulate identification potential and sensing capabilities, strives towards the objective of developing seamless, interoperable and securely integrated systems which can be achieved by connecting the Internet with computing devices. This gives way for the evolution of wireless energy harvesting and power transmission using computing devices. Radio Frequency (RF) based Energy Management (EM) has become the backbone for providing energy to wireless integrated systems. The two main techniques for EM in RFID Sensor Networks (RSN) are Energy Harvesting (EH) and Energy Transfer (ET). These techniques enable the dynamic energy level maintenance and optimisation as well as ensuring reliable communication which adheres to the goal of increased network performance and lifetime. In this paper, we present an overview of RSN, its types of integration and relative applications. We then provide the state-of-the-art EM techniques and strategies for RSN from August 2009 till date, thereby reviewing the existing EH and ET mechanisms designed for RSN. The taxonomy on various challenges for EM in RSN has also been articulated for open research directives

    Development of the future generation of smart high voltage connectors and related components for substations, with energy autonomy and wireless data transmission capability

    Get PDF
    The increased dependency on electricity of modern society, makes reliability of power transmission systems a key point. This goal can be achieved by continuously monitoring power grid parameters, so possible failure modes can be predicted beforehand. It can be done using existing Information and Communication Technologies (ICT) and Internet of Things (10T) technologies that include instrumentation and wireless communication systems, thus forming a wireless sensor network (WSN). Electrical connectors are among the most critical parts of any electrical system and hence, they can act as nodes of such WSN. Therefore, the fundamental objective of this thesis is the design, development and experimental validation of a self-powered IOT solution for real-time monitoring of the health status of a high-voltage substation connector and related components of the electrical substation. This new family of power connectors is called SmartConnector and incorporates a thermal energy harvesting system powering a microcontroller that controls a transmitter and several electronic sensors to measure the temperature, current and the electrical contact resistance (ECR) of the connector. These measurements are sent remotely via a Bluetooth 5 wireless communication module to a local gateway, which further transfers the measured data to a database server for storage as well as further analysis and visualization. By this way, after suitable data processing, the health status of the connector can be available in real-time, allowing different appealing functions, such as assessing the correct installation of the connector, the current health status or its remaining useful life (RUL) in real-time. The same principal can also be used for other components of substation like spacers, insulators, conductors, etc. Hence, to prove universality of this novel approach, a similar strategy is applied to a spacer which is capable of measuring uneven current distribution in three closely placed conductors. This novel IOT device is called as SmartSpacer. Care has to be taken that this technical and scientific development has to be compatible with existing substation bus bars and conductors, and especially to be compatible with the high operating voltages, i.e., from tens to hundreds of kilo-Volts (kV), and with currents in the order of some kilo-pm peres (kA). Although some electrical utilities and manufacturers have progressed in the development of such technologies, including smart meters and smart sensors, electrical device manufacturers such as of substation connectors manufacturers have not yet undertaken the technological advancement required for the development of such a new family of smart components involved in power transmission, which are designed to meet the future needs.La mayor dependencia de la electricidad de la sociedad moderna hace que la fiabilidad de los sistemas de transmisión de energía sea un punto clave. Este objetivo se puede lograr mediante la supervisión continua de los parámetros de la red eléctrica, por lo que los posibles modos de fallo se pueden predecir de antemano. Se puede hacer utilizando las tecnologías existentes de Tecnologías de la Información y la Comunicación (1CT) e Internet de las cosas (lo T) que incluyen sistemas de instrumentación y comunicación inalámbrica, formando así una red de sensores inalámbricos (WSN). Los conectores eléctricos se encuentran entre las partes más críticas de cualquier sistema eléctrico y, por lo tanto, pueden actuar como nodos de dicho VVSN. Por lo tanto, el objetivo fundamental de esta tesis es el diseño, desarrollo y validación experimental de una solución IOT autoalimentada para la supervisión en tiempo real del estado de salud de un conector de subestación de alta tensión y componentes relacionados de la subestación eléctrica. Esta nueva familia de conectores de alimentación se llama SmartConnector e incorpora un sistema de recolección de energía térmica que alimenta un microcontrolador que controla un transmisor y varios sensores electrónicos para medir la temperatura, la corriente y la resistencia del contacto eléctrico (ECR) del conector. Esta nueva familia de conectores de alimentación se llama SmartConnector e incorpora un sistema de recolección de energía térmica que alimenta un microcontrolador que controla un transmisor y varios sensores electrónicos para medir la temperatura, la corriente y la resistencia al contacto eléctrico (ECR) del conector. De esta manera, después del procesamiento de datos adecuado, el estado de salud del conector puede estar disponible en tiempo real, permitiendo diferentes funciones atractivas, como evaluar la correcta instalación del conector, el estado de salud actual o su vida útil restante (RUL) en tiempo real. El mismo principio también se puede utilizar para otros componentes de la subestación como espaciadores, aislantes, conductores, etc. Por lo tanto, para demostrar la universalidad de este enfoque novedoso, se aplica una estrategia similar a un espaciador, que es capaz de medir la distribución de corriente desigual en tres conductores estrechamente situados. Hay que tener cuidado de que este desarrollo técnico y científico tenga que sea compatible con las barras y "busbars" de subestación existentes, y sobre todo para ser compatible con las altas tensiones de funcionamiento, es decir, de decenas a cientos de kilovoltios (kV), y con corrientes en el orden de algunos kilo-Amperes (kA). Aunque algunas empresas eléctricas y fabricantes han progresado en el desarrollo de este tipo de tecnologías, incluidos medidores inteligentes y sensores inteligentes, los fabricantes de dispositivos eléctricos, como los fabricantes de conectores de subestación, aún no han emprendido el avance tecnológico necesario para el desarrollo de una nueva familia de componentes intel

    Wireless Power Transfer System for Battery-Less Sensor Nodes

    Get PDF
    For the first time, the design and implementation of a fully-integrated wireless information and power transfer system, operating at 24 GHz and enabling battery-less sensor nodes, is presented in this paper. The system consists of an RF power source, a receiver antenna array, a rectifier, and a battery-less sensor node which communicates via backscatter modulation at 868 MHz. The rectifier circuits use commercially available Schottky diodes to convert the RF power to DC with a measured efficiency of up to 35%, an improvement of ten percentage points compared with previously reported results. The rectifiers and the receive antenna arrays were jointly designed and optimised, thereby reducing the overall circuit size. The battery-less sensor transmitted data to a base station realised as a GNU Radio flow running on a bladeRF Software Defined Radio module. The whole system was tested in free-space in laboratory conditions and was capable of providing sufficient energy to the sensor node in order to enable operation and wireless communication at a distance of 0.15 metres

    Multi-purpose Electromagnetic Energy Harvesting System

    Get PDF
    This thesis proposes a multi-purpose electromagnetic energy harvesting system that harnesses mechanical energy from diverse types of mechanical motion sources and converts it into low power electrical energy. The harvested electrical energy is either used to supply power to low-power electronic devices or stored in an internal storage battery for later use. The proposed energy harvester can be i) mounted on a human’s knee, elbow, or hip, ii) hand-cranked, as well as iii) installed on any enclosure with fixed and movable parts (e.g., doors and/or windows). When mounted on a knee or hip, the device is actuated only during the so-called negative energy cycle of the motion and does not disturb the motion in the forward direction. The key building blocks of the proposed multi-purpose electromagnetic energy harvesting system is a new brushless AC electromagnetic generator, an adaptive motion translation mechanism and a smart power management system. The brushless AC generator consists of a new structure with a detachable rotor arrangement comprising mainly Neodymium rare-earth magnets mounted on an adjustable height rotor shaft and a stator made up of top and bottom flanges and a single continuous coil arrangement on a non-magnetic spool worn on a center magnetic stator core. The stator and rotor arrangement is carefully designed to allow for variable air gap so that the initial amount of torque required to move the rotor is adjustable and the amount of the generated output voltage can be controlled. Finite-element modeling magnetics (FEMM) simulation tool was used for the optimization of the new brushless generator, selecting the different generator materials, and determining the placement of the key components to achieve an efficient and truly adjustable system to the variation of frequencies and torque conditions. Furthermore, a gearbox was used as a mechanical up conversion mechanism to multiply the relatively low human motion to up to 5000 RPM at a walk pace of about one step per second. For this purpose, a three-stage spur gear system was designed using a roller-clutch at the front end to only allow motion during the negative cycle. The gearbox, when assembled together with the generator, works together with the adjustable height rotor to create the desired effect – adaptive, multi-purpose energy harvesting system. The power management design was optimized to maximum energy harvesting at rated RPM. When an external load is detected, the harvested power is routed to the external load, else, the power is routed to the internal storage battery for later use. The completed system generates between 2.5 watts and 7.5 watts of electrical power at an overall system efficiency of up to 84%
    corecore