14,994 research outputs found

    Big Data Model Simulation on a Graph Database for Surveillance in Wireless Multimedia Sensor Networks

    Full text link
    Sensors are present in various forms all around the world such as mobile phones, surveillance cameras, smart televisions, intelligent refrigerators and blood pressure monitors. Usually, most of the sensors are a part of some other system with similar sensors that compose a network. One of such networks is composed of millions of sensors connect to the Internet which is called Internet of things (IoT). With the advances in wireless communication technologies, multimedia sensors and their networks are expected to be major components in IoT. Many studies have already been done on wireless multimedia sensor networks in diverse domains like fire detection, city surveillance, early warning systems, etc. All those applications position sensor nodes and collect their data for a long time period with real-time data flow, which is considered as big data. Big data may be structured or unstructured and needs to be stored for further processing and analyzing. Analyzing multimedia big data is a challenging task requiring a high-level modeling to efficiently extract valuable information/knowledge from data. In this study, we propose a big database model based on graph database model for handling data generated by wireless multimedia sensor networks. We introduce a simulator to generate synthetic data and store and query big data using graph model as a big database. For this purpose, we evaluate the well-known graph-based NoSQL databases, Neo4j and OrientDB, and a relational database, MySQL.We have run a number of query experiments on our implemented simulator to show that which database system(s) for surveillance in wireless multimedia sensor networks is efficient and scalable

    Energy-aware Scheduling of Surveillance in Wireless Multimedia Sensor Networks

    Get PDF
    Wireless sensor networks involve a large number of sensor nodes with limited energy supply, which impacts the behavior of their application. In wireless multimedia sensor networks, sensor nodes are equipped with audio and visual information collection modules. Multimedia contents are ubiquitously retrieved in surveillance applications. To solve the energy problems during target surveillance with wireless multimedia sensor networks, an energy-aware sensor scheduling method is proposed in this paper. Sensor nodes which acquire acoustic signals are deployed randomly in the sensing fields. Target localization is based on the signal energy feature provided by multiple sensor nodes, employing particle swarm optimization (PSO). During the target surveillance procedure, sensor nodes are adaptively grouped in a totally distributed manner. Specially, the target motion information is extracted by a forecasting algorithm, which is based on the hidden Markov model (HMM). The forecasting results are utilized to awaken sensor node in the vicinity of future target position. According to the two properties, signal energy feature and residual energy, the sensor nodes decide whether to participate in target detection separately with a fuzzy control approach. Meanwhile, the local routing scheme of data transmission towards the observer is discussed. Experimental results demonstrate the efficiency of energy-aware scheduling of surveillance in wireless multimedia sensor network, where significant energy saving is achieved by the sensor awakening approach and data transmission paths are calculated with low computational complexity

    Demo : distributed video coding applications in wireless multimedia sensor networks

    Get PDF
    Novel distributed video coding (DVC) architectures developed by the IBBT DVC group realize state-of-the-art video coding efficiency under stringent energy restrictions, while supporting error-resilience and scalability. Therefore, these architectures are particularly attractive for application scenarios involving low-complexity energy-constrained wireless visual sensors. This demo presents the scenarios, which are considered to be the most promising areas of integration for IBBT's DVC systems, considering feasibility and commercial applicability

    Field test of multi-hop image sensing network prototype on a city-wide scale

    Get PDF
    Open Access funded by Chongqing University of Posts and Telecommuniocations Under a Creative Commons license, https://creativecommons.org/licenses/by-nc-nd/4.0/Wireless multimedia sensor network drastically stretches the horizon of traditional monitoring and surveillance systems, of which most existing research have utilised Zigbee or WiFi as the communication technology. Both technologies use ultra high frequencies (mainly 2.4 GHz) and suffer from relatively short transmission range (i.e. 100 m line-of-sight). The objective of this paper is to assess the feasibility and potential of transmitting image information using RF modules with lower frequencies (e.g. 433 MHz) in order to achieve a larger scale deployment such as a city scenario. Arduino platform is used for its low cost and simplicity. The details of hardware properties are elaborated in the article, followed by an investigation of optimum configurations for the system. Upon an initial range testing outcome of over 2000 m line-of-sight transmission distance, the prototype network has been installed in a real life city plot for further examination of performance. A range of suitable applications has been proposed along with suggestions for future research.Peer reviewe

    Locational wireless and social media-based surveillance

    Get PDF
    The number of smartphones and tablets as well as the volume of traffic generated by these devices has been growing constantly over the past decade and this growth is predicted to continue at an increasing rate over the next five years. Numerous native features built into contemporary smart devices enable highly accurate digital fingerprinting techniques. Furthermore, software developers have been taking advantage of locational capabilities of these devices by building applications and social media services that enable convenient sharing of information tied to geographical locations. Mass online sharing resulted in a large volume of locational and personal data being publicly available for extraction. A number of researchers have used this opportunity to design and build tools for a variety of uses – both respectable and nefarious. Furthermore, due to the peculiarities of the IEEE 802.11 specification, wireless-enabled smart devices disclose a number of attributes, which can be observed via passive monitoring. These attributes coupled with the information that can be extracted using social media APIs present an opportunity for research into locational surveillance, device fingerprinting and device user identification techniques. This paper presents an in-progress research study and details the findings to date

    Wireless Multimedia Sensor Networks Applications and Security Challenges

    Get PDF
    The emergence of low-cost and mature technologies in wireless communication, visual sensor devices, and digital signal processing facilitate of wireless multimedia sensor networks (WMSNs). Like sensor networks which respond to sensory information such as humidity and temperature, WMSN interconnects autonomous devices for capturing and processing video and audio sensory information. WMSNs will enable new applications such as multimedia surveillance, traffic enforcement and control systems, advanced health care delivery, structural health monitoring, and industrial process control. Due to WMSNs have some novel features which stem the fact that some of the sensor node will have video cameras and higher computation capabilities. Consequently, the WMSNs bring new security of challenges as well as new opportunities. This paper presents WMSNs application and security challenges

    Towards a cloud‑based automated surveillance system using wireless technologies

    Get PDF
    Cloud Computing can bring multiple benefits for Smart Cities. It permits the easy creation of centralized knowledge bases, thus straightforwardly enabling that multiple embedded systems (such as sensor or control devices) can have a collaborative, shared intelligence. In addition to this, thanks to its vast computing power, complex tasks can be done over low-spec devices just by offloading computation to the cloud, with the additional advantage of saving energy. In this work, cloud’s capabilities are exploited to implement and test a cloud-based surveillance system. Using a shared, 3D symbolic world model, different devices have a complete knowledge of all the elements, people and intruders in a certain open area or inside a building. The implementation of a volumetric, 3D, object-oriented, cloud-based world model (including semantic information) is novel as far as we know. Very simple devices (orange Pi) can send RGBD streams (using kinect cameras) to the cloud, where all the processing is distributed and done thanks to its inherent scalability. A proof-of-concept experiment is done in this paper in a testing lab with multiple cameras connected to the cloud with 802.11ac wireless technology. Our results show that this kind of surveillance system is possible currently, and that trends indicate that it can be improved at a short term to produce high performance vigilance system using low-speed devices. In addition, this proof-of-concept claims that many interesting opportunities and challenges arise, for example, when mobile watch robots and fixed cameras would act as a team for carrying out complex collaborative surveillance strategies.Ministerio de Economía y Competitividad TEC2016-77785-PJunta de Andalucía P12-TIC-130
    • …
    corecore