2,589 research outputs found

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    DYNAMIC SMART GRID COMMUNICATION PARAMETERS BASED COGNITIVE RADIO NETWORK

    Get PDF
    The demand for more spectrums in a smart grid communication network is a significant challenge in originally scarce spectrum resources. Cognitive radio (CR) is a powerful technique for solving the spectrum scarcity problem by adapting the transmission parameters according to predefined objectives in an active wireless communication network. This paper presents a cognitive radio decision engine that dynamically selects optimal radio transmission parameters for wireless home area networks (HAN) of smart grid applications via the multi-objective differential evolution (MODE) optimization method. The proposed system helps to drive optimal communication parameters to realize power saving, maximum throughput and minimum bit error rate communication modes. A differential evolution algorithm is used to select the optimal transmission parameters for given communication modes based on a fitness function that combines multiple objectives based on appropriate weights. Simulation results highlight the superiority of the proposed system in terms of accuracy and convergence as compared with other evolution algorithms (genetic optimization, particle swarm optimization, and ant colony optimization) for different communication modes (power saving mode, high throughput mode, emergency communication mode, and balanced mode)

    Monitoring and Fault Location Sensor Network for Underground Distribution Lines

    Get PDF
    One of the fundamental tasks of electric distribution utilities is guaranteeing a continuous supply of electricity to their customers. The primary distribution network is a critical part of these facilities because a fault in it could affect thousands of customers. However, the complexity of this network has been increased with the irruption of distributed generation, typical in a Smart Grid and which has significantly complicated some of the analyses, making it impossible to apply traditional techniques. This problem is intensified in underground lines where access is limited. As a possible solution, this paper proposes to make a deployment of a distributed sensor network along the power lines. This network proposes taking advantage of its distributed character to support new approaches of these analyses. In this sense, this paper describes the aquiculture of the proposed network (adapted to the power grid) based on nodes that use power line communication and energy harvesting techniques. In this sense, it also describes the implementation of a real prototype that has been used in some experiments to validate this technological adaptation. Additionally, beyond a simple use for monitoring, this paper also proposes the use of this approach to solve two typical distribution system operator problems, such as: fault location and failure forecasting in power cables.Ministerio de Economía y Competitividad, Government of Spain project Sistema Inteligente Inalámbrico para Análisis y Monitorización de Líneas de Tensión Subterráneas en Smart Grids (SIIAM) TEC2013-40767-RMinisterio de Educación, Cultura y Deporte, Government of Spain, for the funding of the scholarship Formación de Profesorado Universitario 2016 (FPU 2016

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Major requirements for building Smart Homes in Smart Cities based on Internet of Things technologies

    Get PDF
    The recent boom in the Internet of Things (IoT) will turn Smart Cities and Smart Homes (SH) from hype to reality. SH is the major building block for Smart Cities and have long been a dream for decades, hobbyists in the late 1970s made Home Automation (HA) possible when personal computers started invading home spaces. While SH can share most of the IoT technologies, there are unique characteristics that make SH special. From the result of a recent research survey on SH and IoT technologies, this paper defines the major requirements for building SH. Seven unique requirement recommendations are defined and classified according to the specific quality of the SH building blocks

    Wireless Sensor Networks: Challenges Ahead

    Get PDF
    The aim of this paper is to analyze the different Wireless Sensor Network (WSN) transport protocols byidentifying various experimental parameters in order to undertake a comparative evaluation. To build the groundwork, we first discuss the generic design for a transport protocol based on three key concepts; congestion control, reliability support and priority support. The basis of this design was developed by assessing several aspects of numerous transport protocols. However they all using different set of parameters and settings and hence it is difficult to benchmark one against the other. In this paper, we discuss the simulation settings like packet size, number of exploited sensors and their distribution in the field, buffer size, coverage area and power levels

    A Study on Energy Efficiency in Wireless Multimedia Sensor Networks

    Get PDF
    Wireless Multimedia Sensor Networks (WMSNs)  consist of cheap sensors which transmit real time multimedia data to each other or to a sink. An audio and a visual information may exist in a single device. besides, WMSNs are able to store real time data after gathering it from several sensors. But since both the size of transferred data is big and the difficulties to reach the areas where WMSNs are used, network lifetime of WMSNs and their energy become a vital requirement. Using energy in an efficient way is also necessary for a network not to loose its functionality. What kind of solutions are considered in the literature for WMSNs and its analysis are given ın this paper. First, where the WMSNs are used is shortly mentioned and then, the studies related to energy efficiency are investigated

    Smart Wireless Sensor Networks

    Get PDF
    The recent development of communication and sensor technology results in the growth of a new attractive and challenging area - wireless sensor networks (WSNs). A wireless sensor network which consists of a large number of sensor nodes is deployed in environmental fields to serve various applications. Facilitated with the ability of wireless communication and intelligent computation, these nodes become smart sensors which do not only perceive ambient physical parameters but also be able to process information, cooperate with each other and self-organize into the network. These new features assist the sensor nodes as well as the network to operate more efficiently in terms of both data acquisition and energy consumption. Special purposes of the applications require design and operation of WSNs different from conventional networks such as the internet. The network design must take into account of the objectives of specific applications. The nature of deployed environment must be considered. The limited of sensor nodes� resources such as memory, computational ability, communication bandwidth and energy source are the challenges in network design. A smart wireless sensor network must be able to deal with these constraints as well as to guarantee the connectivity, coverage, reliability and security of network's operation for a maximized lifetime. This book discusses various aspects of designing such smart wireless sensor networks. Main topics includes: design methodologies, network protocols and algorithms, quality of service management, coverage optimization, time synchronization and security techniques for sensor networks
    corecore