205 research outputs found

    On the performance of energy harvesting AF partial relay selection with TAS and outdated channel state information over identical channels

    Get PDF
    Energy scarcity has been known to be one of the most noticeable challenges in wireless communication system. In this paper, the performance of an energy harvesting based partial relay selection (PRS) cooperative system with transmit antenna selection (TAS) and outdated channel state information (CSI) is investigated. The system dual-hops links are assumed to follow Rayleigh distribution and the relay selection is based on outdated CSI of the first link. To realize the benefit of multiple antenna, the amplified-and-forward (AF) relay nodes then employs the TAS technique for signal transmission and signal reception is achieved at the destination through maximum ratio combining (MRC) scheme. Thus, the closed-form expression for the system equivalent end-to-end cumulative distribution function (CDF) is derived. Based on this, the analytical closed-form expressions for the outage probability, average bit error rate, and throughput for the delay-limited transmission mode are then obtained. The results illustrated that the energy harvesting time, relay distance, channel correlation coefficient, the number of relay transmit antennas and destination received antenna have significant effect on the system performance. Monte-carol simulation is employed to validate the accuracy of the derived expressions

    Wireless powered D2D communications underlying cellular networks: design and performance of the extended coverage

    Get PDF
    Because of the short battery life of user equipments (UEs), and the requirements for better quality of service have been more demanding, energy efficiency (EE) has emerged to be important in device-to-device (D2D) communications. In this paper, we consider a scenario, in which D2D UEs in a half-duplex decode-and-forward cognitive D2D communication underlying a traditional cellular network harvest energy and communicate with each other by using the spectrum allocated by the base station (BS). In order to develop a practical design, we achieve the optimal time switching (TS) ratio for energy harvesting. Besides that, we derive closed-form expressions for outage probability, sum-bit error rate, average EE and instantaneous rate by considering the scenario when installing the BS near UEs or far from the UEs. Two communication types are enabled by TS-based protocol. Our numerical and simulation results prove that the data rate of the D2D communication can be significantly enhanced.Web of Science58439939

    Beamforming Optimization for Full-Duplex Wireless-powered MIMO Systems

    Get PDF
    We propose techniques for optimizing transmit beamforming in a full-duplex multiple-input-multiple-output (MIMO) wireless-powered communication system, which consists of two phases. In the first phase, the wireless-powered mobile station (MS) harvests energy using signals from the base station (BS), whereas in the second phase, both MS and BS communicate to each other in a full-duplex mode. When complete instantaneous channel state information (CSI) is available, the BS beamformer and the time-splitting (TS) parameter of energy harvesting are jointly optimized in order to obtain the BS-MS rate region. The joint optimization problem is non-convex, however, a computationally efficient optimum technique, based upon semidefinite relaxation and line-search, is proposed to solve the problem. A sub-optimum zero-forcing approach is also proposed, in which a closed-form solution of TS parameter is obtained. When only second-order statistics of transmit CSI is available, we propose to maximize the ergodic information rate at the MS, while maintaining the outage probability at the BS below a certain threshold. An upper bound for the outage probability is also derived and an approximate convex optimization framework is proposed for efficiently solving the underlying non-convex problem. Simulations demonstrate the advantages of the proposed methods over the sub-optimum and half-duplex ones.Comment: 14 pages, accepte

    Enabling non-linear energy harvesting in power domain based multiple access in relaying networks: Outage and ergodic capacity performance analysis

    Get PDF
    The Power Domain-based Multiple Access (PDMA) scheme is considered as one kind of Non-Orthogonal Multiple Access (NOMA) in green communications and can support energy-limited devices by employing wireless power transfer. Such a technique is known as a lifetime-expanding solution for operations in future access policy, especially in the deployment of power-constrained relays for a three-node dual-hop system. In particular, PDMA and energy harvesting are considered as two communication concepts, which are jointly investigated in this paper. However, the dual-hop relaying network system is a popular model assuming an ideal linear energy harvesting circuit, as in recent works, while the practical system situation motivates us to concentrate on another protocol, namely non-linear energy harvesting. As important results, a closed-form formula of outage probability and ergodic capacity is studied under a practical non-linear energy harvesting model. To explore the optimal system performance in terms of outage probability and ergodic capacity, several main parameters including the energy harvesting coefficients, position allocation of each node, power allocation factors, and transmit signal-to-noise ratio (SNR) are jointly considered. To provide insights into the performance, the approximate expressions for the ergodic capacity are given. By matching analytical and Monte Carlo simulations, the correctness of this framework can be examined. With the observation of the simulation results, the figures also show that the performance of energy harvesting-aware PDMA systems under the proposed model can satisfy the requirements in real PDMA applications.Web of Science87art. no. 81

    Physical Layer Service Integration in 5G: Potentials and Challenges

    Full text link
    High transmission rate and secure communication have been identified as the key targets that need to be effectively addressed by fifth generation (5G) wireless systems. In this context, the concept of physical-layer security becomes attractive, as it can establish perfect security using only the characteristics of wireless medium. Nonetheless, to further increase the spectral efficiency, an emerging concept, termed physical-layer service integration (PHY-SI), has been recognized as an effective means. Its basic idea is to combine multiple coexisting services, i.e., multicast/broadcast service and confidential service, into one integral service for one-time transmission at the transmitter side. This article first provides a tutorial on typical PHY-SI models. Furthermore, we propose some state-of-the-art solutions to improve the overall performance of PHY-SI in certain important communication scenarios. In particular, we highlight the extension of several concepts borrowed from conventional single-service communications, such as artificial noise (AN), eigenmode transmission etc., to the scenario of PHY-SI. These techniques are shown to be effective in the design of reliable and robust PHY-SI schemes. Finally, several potential research directions are identified for future work.Comment: 12 pages, 7 figure

    Power Switching Protocol for Two-way Relaying Network under Hardware Impairments

    Get PDF
    In this paper, we analyze the impact of hardware impairments at relay node and source node (i.e. imperfect nodes) on network performance by evaluating outage probability based on the effective signal to noise and distortion ratio (SNDR). Especially, we propose energy harvesting protocol at the relay and source nodes, namely, power switching imperfect relay (PSIR) and power switching imperfect source (PSIS). Aiming to determine the performance of energy constrained network, we first derive closed-form expressions of the outage probability and then the throughput can be maximized in delay-limited transmission mode. The simulation results provide practical insights into the impacts of hardware impairments and power switching factors of the energy harvesting protocol on the performance of energy harvesting enabled two-way relaying network
    corecore