54,260 research outputs found

    Elements of Cellular Blind Interference Alignment --- Aligned Frequency Reuse, Wireless Index Coding and Interference Diversity

    Full text link
    We explore degrees of freedom (DoF) characterizations of partially connected wireless networks, especially cellular networks, with no channel state information at the transmitters. Specifically, we introduce three fundamental elements --- aligned frequency reuse, wireless index coding and interference diversity --- through a series of examples, focusing first on infinite regular arrays, then on finite clusters with arbitrary connectivity and message sets, and finally on heterogeneous settings with asymmetric multiple antenna configurations. Aligned frequency reuse refers to the optimality of orthogonal resource allocations in many cases, but according to unconventional reuse patterns that are guided by interference alignment principles. Wireless index coding highlights both the intimate connection between the index coding problem and cellular blind interference alignment, as well as the added complexity inherent to wireless settings. Interference diversity refers to the observation that in a wireless network each receiver experiences a different set of interferers, and depending on the actions of its own set of interferers, the interference-free signal space at each receiver fluctuates differently from other receivers, creating opportunities for robust applications of blind interference alignment principles

    Vector Linear Error Correcting Index Codes and Discrete Polymatroids

    Full text link
    The connection between index coding and matroid theory have been well studied in the recent past. El Rouayheb et al. established a connection between multi linear representation of matroids and wireless index coding. Muralidharan and Rajan showed that a vector linear solution to an index coding problem exists if and only if there exists a representable discrete polymatroid satisfying certain conditions. Recently index coding with erroneous transmission was considered by Dau et al.. Error correcting index codes in which all receivers are able to correct a fixed number of errors was studied. In this paper we consider a more general scenario in which each receiver is able to correct a desired number of errors, calling such index codes differential error correcting index codes. We show that vector linear differential error correcting index code exists if and only if there exists a representable discrete polymatroid satisfying certain conditionsComment: arXiv admin note: substantial text overlap with arXiv:1501.0506

    Making recommendations bandwidth aware

    Full text link
    This paper asks how much we can gain in terms of bandwidth and user satisfaction, if recommender systems became bandwidth aware and took into account not only the user preferences, but also the fact that they may need to serve these users under bandwidth constraints, as is the case over wireless networks. We formulate this as a new problem in the context of index coding: we relax the index coding requirements to capture scenarios where each client has preferences associated with messages. The client is satisfied to receive any message she does not already have, with a satisfaction proportional to her preference for that message. We consistently find, over a number of scenarios we sample, that although the optimization problems are in general NP-hard, significant bandwidth savings are possible even when restricted to polynomial time algorithms
    • …
    corecore