1,496 research outputs found

    A Movement-Tremors Recorder for Patients of Neurodegenerative Diseases

    Get PDF
    Neurodegenerative diseases such as Alzheimer, Parkinson, motor neuron, and Chorea affect millions of people today. Their effect on the central nervous system causes the loss of brain functions as well as motor disturbances and sometimes cognitive deficits. In such a scenario, the monitoring and evaluation of early symptoms are mandatory for the improvement of the patient's quality of life. Here, the authors describe the development, the laboratory calibration, and the "in-field validation" under the medical supervision of a movement tremors recorder for subjects affected by neurodegenerative diseases. The developed device is based on an array of four accelerometers connected to an embedded development board. This system is able to monitor tremor/movement, accidental falls, and, moreover, it can track the Alzheimer subjects' geographical position. A remote supervisor can collect data from the system through Bluetooth, Wi-Fi, or GSM connections. A data compression algorithm was developed directly on board in order to increase the efficiency of data transmission and reduce power consumptions

    Fog computing for assisting and tracking elder patients with neurodegenerative diseases

    Get PDF
    U.S. hospitals transmit and manage great amounts of information with the avenue of Internet of things. This work departs from a real need detected by healthcare centers and hospitals in U.S., Spain and Ecuador. This work focuses on the application of fog computing for obtaining an app rich in visual content that will not overload U.S. hospital infrastructures even if it was used massively. The simulation results showed that the proposed fog-based approach could support a regular use (one day out of three on average) by 1% of patients of one of the most common neurodegenerative diseases in 14 states in U.S (i.e. 36, 400 patients in total) with only a traffic of 528 KB per day on average when using one hospital per state

    Human Gait Analysis in Neurodegenerative Diseases: a Review

    Get PDF
    This paper reviews the recent literature on technologies and methodologies for quantitative human gait analysis in the context of neurodegnerative diseases. The use of technological instruments can be of great support in both clinical diagnosis and severity assessment of these pathologies. In this paper, sensors, features and processing methodologies have been reviewed in order to provide a highly consistent work that explores the issues related to gait analysis. First, the phases of the human gait cycle are briefly explained, along with some non-normal gait patterns (gait abnormalities) typical of some neurodegenerative diseases. The work continues with a survey on the publicly available datasets principally used for comparing results. Then the paper reports the most common processing techniques for both feature selection and extraction and for classification and clustering. Finally, a conclusive discussion on current open problems and future directions is outlined

    Recognition of elementary arm movements using orientation of a tri-axial accelerometer located near the wrist

    No full text
    In this paper we present a method for recognising three fundamental movements of the human arm (reach and retrieve, lift cup to mouth, rotation of the arm) by determining the orientation of a tri-axial accelerometer located near the wrist. Our objective is to detect the occurrence of such movements performed with the impaired arm of a stroke patient during normal daily activities as a means to assess their rehabilitation. The method relies on accurately mapping transitions of predefined, standard orientations of the accelerometer to corresponding elementary arm movements. To evaluate the technique, kinematic data was collected from four healthy subjects and four stroke patients as they performed a number of activities involved in a representative activity of daily living, 'making-a-cup-of-tea'. Our experimental results show that the proposed method can independently recognise all three of the elementary upper limb movements investigated with accuracies in the range 91–99% for healthy subjects and 70–85% for stroke patients

    An innovative AAL system based on neural networks and IoT-aware technologies to improve the quality of life in elderly people

    Get PDF
    Nowadays more and more elderly people need support in daily activities. This is due to the increase of cognitive diseases and other conditions which lead the elderly to not being self-sufficient. Considering this, providing an Ambient Assisted Living system could improve significantly people life quality and could support caregivers' tasks. The combination of Ambient Assisted Living systems and information and communication technologies achieve this purpose perfectly. They exploit internet of things and artificial intelligence paradigms to make daily challenges easier for people with neurodegenerative diseases. This work melds technologies mentioned above providing a smart system for elderly to manage goods and fill in shopping lists. It was possible using software, hardware, and cloud systems combined with a neural network aimed to recognise products. The proposed system has been validated both from a functional point of view through a proof-of-concept and quantitatively by a performance analysis of its components

    Empowering patients in self-management of parkinson's disease through cooperative ICT systems

    Get PDF
    The objective of this chapter is to demonstrate the technical feasibility and medical effectiveness of personalised services and care programmes for Parkinson's disease, based on the combination of mHealth applications, cooperative ICTs, cloud technologies and wearable integrated devices, which empower patients to manage their health and disease in cooperation with their formal and informal caregivers, and with professional medical staff across different care settings, such as hospital and home. The presented service revolves around the use of two wearable inertial sensors, i.e. SensFoot and SensHand, for measuring foot and hand performance in the MDS-UPDRS III motor exercises. The devices were tested in medical settings with eight patients, eight hyposmic subjects and eight healthy controls, and the results demonstrated that this approach allows quantitative metrics for objective evaluation to be measured, in order to identify pre-motor/pre-clinical diagnosis and to provide a complete service of tele-health with remote control provided by cloud technologies. © 2016, IGI Global. All rights reserved
    • 

    corecore