64,091 research outputs found

    Rancang Bangun Sistem Komunikasi Multihop pada Jaringan Sensor Nirkabel

    Get PDF
    Wireless Sensor Network is a wireless network consists of a group of sensor (node slave) that use for monitoring condition at some area. The information data of monitoring result will be delivered to the node master (Administrator). Wireless Sensor Network has wide area coverage and usually deployed at area condition where contained obstacles that have a losses effect. So in this Last Project, it will have design and build some communication system that can make the node slave to send information data of monitoring result to node master indirectly, that is sent through any node slave around. It is called Multihop Communications. To build, this system needs a ZigBee Protocol IEEE 802.15.4 standard as a data communication rule inter-node and between node and Personal Computer (Administrator), XBee Pro as a Transceiver, and AVR ATMega162 microcontroller as a node master and AVR ATMega8535 microcontroller as a node slave with C Programming Language. Multihop packet data communication on this project was successful, where the success rate up 99,85%, almost all data packets successfully sent and received by each node, either double or to triple hop. Baudrate can be used for transmission of data packets on this last project was 9600. Position and deploying down the nodes greatly affect system performance, especially for monitoring areas that have a lot of obstacle. Keywords : Wireless Sensor Network, node, multihop, IEEE 802.15.4

    A Simulation of Wireless Sensor Network Using ZigBee

    Get PDF
    Sensor networks have been a wide research area, during the last years. Wireless sensor networks are distributed network structures in which many sensors connect wirelessly to communicate with one another. In this paper the IEEE 802.15.4/ZigBee is used due to its low-power, rate and cost which allows the communication of two way wireless sensor network. In this paper IEEE 802.15.4 performance is analyzed based on OPNET simulator which allows the abilities of generating correct results and analysis to identify the actual behaviour of the real system. With this simulator program, the effect of performance parameters like throughput, data traffic received and data traffic sent for three system topology scenarios are presented. Keywords: WSN, IEEE 802.15.4, performance

    A Unified Wireless Sensor Network Framework

    Get PDF
    Wireless sensor networks (WSNs) have been a significant area of research over the past decade. WSN systems are used in a wide range of applications such as surveillance, environmental monitoring, target tracking, wildlife tracking, personal health monitoring, machinery monitoring, and many others. With such wide ranging applications, there is active research in nearly every facet of the field including network topologies, communication protocols, node localization, time synchronization, and sensor data processing. This movement has largely been the result of the advances in microelectronics and low-power radio systems. These advancements have enabled the design and implementation of small, powerful, low-power, wireless sensor network systems. Like any emerging technology, a standard needs to be established to allow the advances in the field to be directly leveraged rather than requiring reinvention. This paper outlines the traditional approaches to WSN system design, and in contrast, proposes the necessary components of a unified WSN framework that would support the majority of present applications as well as providing the foundation for further advancements in the field

    Development and Flight Testing of a Wireless Avionics Network Based on the IEEE 802.11 Protocols

    Get PDF
    This report describes the development and flight testing of the IEEE 802.11 protocol-based Wireless Flight Management System (WFMS) using low cost Commercial-Off-The-Shelf (COTS) equipment and software. The unlicensed spectrum allocation in the 2.4 GHz and 5 GHz bands by the FCC has encouraged the industry to develop new standards for short-range communication that are commercially viable. This has resulted in new short-range communication technologies like Bluetooth and the Wireless Local Area Network (WLAN). The new modulation techniques developed for wireless communication support wired equivalent data rates. The commercial success of these technologies and their wide market adaptation has resulted in reduced costs for the devices that support these technologies. Applications of wireless technology in aerospace engineering are vast, including development, testing, manufacturing, prognostics health management, ground support equipment and active control. The high data rates offered by technologies like WLAN (IEEE 802.11 a/b/g) are sufficient to implement critical and essential data applications of avionics systems. A wireless avionics network based on IEEE 802.11a/b/g protocols will reduce the complexity and cost of installation and maintenance of the avionics system when compared to the existing wired system. The proposed WFMS imitates the flight management system of any commercial aircraft in terms of functionality. It utilizes a radio frequency for the transmission of the sensor data to the Cockpit Display Unit (CDU) and the Flight Management Computer (FMC). WFMS consists of a FMC, data acquisition node, sensor node and a user interface node. The FMC and the data acquisition nodes are built using PC/104 standard modules. The sensor node consists of an Attitude and Heading Reference System (AHRS) and a GPS integrated with a serial device server. The user interface node is installed with moving map software which receives data from the AHRS and GPS to display flight information including topographic maps, attitude, heading, velocity, et cetera. This thesis demonstrates the performance evaluation of the WFMS both on the ground and in flight, and its advantages over a wired system. This thesis focuses on the evaluation of IEEE 802.11a/b/g protocols for avionics application. Efforts taken to calibrate the available bandwidth of the WLAN network at different operating conditions and varying ranges using different network analysis tools are explained briefly. Considerable research on issues like electromagnetic interference and network security critical to the development of a wireless network for avionics has also been done. This report covers different aspects of the implementation of wireless technology for aircraft systems. This work is a successful starting point for the new fly-by-wireless concept with extensions to active wireless flight control

    A Line-Of-Slight Sensor Network for Wide Area Video Surveillance: Simulation and Evaluation

    Get PDF
    Substantial performance improvement of a wide area video surveillance network can be obtained with the addition of a Line-of-Sight sensor. The research described in this thesis shows that while the Line-of-Sight sensor cannot monitor areas with the ubiquity of video cameras alone, the combined network produces substantially fewer false alarms and superior location precision for numerous moving people than video. Recent progress in the fabrication of inexpensive, robust CMOS-based video cameras have triggered a new approach to wide area surveillance of busy areas such as modeling an airport corridor as a distributed sensor network problem. Wireless communication between these cameras and other sensors make it more practical to deploy them in an arbitrary spatial configuration to unobtrusively monitor cooperative and non-cooperative people. The computation and communication to establish image registration between the cameras grows rapidly as the number of cameras increases. Computation is required to detect people in each image, establish a correspondence between people in two or more images, compute exact 3-D positions from each corresponding pair, temporally track targets in space and time, and assimilate resultant data until thresholds have been reached to either cause an alarm or abandon further monitoring of that person. Substantial improvement can be obtained with the addition of a Line-of-Sight sensor as a location detection system to decoupling the detection, localization, and identification subtasks. That is, if the where can be answered by a location detection system, the what can be addressed by the video most effectively

    Combining LoRaWAN and a New 3D Motion Model for Remote UAV Tracking

    Full text link
    Over the last few years, the many uses of Unmanned Aerial Vehicles (UAVs) have captured the interest of both the scientific and the industrial communities. A typical scenario consists in the use of UAVs for surveillance or target-search missions over a wide geographical area. In this case, it is fundamental for the command center to accurately estimate and track the trajectories of the UAVs by exploiting their periodic state reports. In this work, we design an ad hoc tracking system that exploits the Long Range Wide Area Network (LoRaWAN) standard for communication and an extended version of the Constant Turn Rate and Acceleration (CTRA) motion model to predict drone movements in a 3D environment. Simulation results on a publicly available dataset show that our system can reliably estimate the position and trajectory of a UAV, significantly outperforming baseline tracking approaches.Comment: 6 pages, 6 figures, in review for IEEE WISARN 2020 (INFOCOM WORKSHOP) 2020 : IEEE WiSARN 2020 (INFOCOM WORKSHOP) 2020: 13th International Workshop on Wireless Sensor, Robot and UAV Network

    A State of Art Concept in Contriving of Underwater Networks

    Get PDF
    the underwater ocean environment is widely considered as one of the most difficult communications channels. Underwater acoustic networks have recently emerged as a new area of research in wireless networking. Underwater networks are generally formed by acoustically connected ocean - bottom sensors, underwater gateways and a surfa ce station, which provides a link to an on - shore control center. In recent years, there has been substantial work on protocol design for these networks with most efforts focusing on MAC and network layer protocols. Low communication bandwidth, large propag ation delay, floating node mobility, and high error probability are the challenges of building mobile underwater wireless sensor networks (WSN) for aquatic applications. Underwater sensor networks (WSNs) are the enabling technology for wide range of appl ications like monitoring the strong influences and impact of climate regulation, nutrient production, oil retrieval and transportation, man y scientific, environmental, commercial, safety, and military applications. This paper first introduces the concept o f UWSN, operation, applications and then reviews some recent developments within this research area and proposes an adaptive push system for dissemination of data in underwater wireless sensor networks. The goal of this paper is to survey the existing net w ork technology and its applicability to underwater acoustic channels. In this paper we provide an overview of recent medium acces s control, routing, transport, and cross - layer networking protocols. It examines the main approaches and challenges in the desi gn and implementation of underwater wireless sensor networks. Finally, some suggestions and promising solutions are given for th ese issues

    A comprehensive survey of wireless body area networks on PHY, MAC, and network layers solutions

    Get PDF
    Recent advances in microelectronics and integrated circuits, system-on-chip design, wireless communication and intelligent low-power sensors have allowed the realization of a Wireless Body Area Network (WBAN). A WBAN is a collection of low-power, miniaturized, invasive/non-invasive lightweight wireless sensor nodes that monitor the human body functions and the surrounding environment. In addition, it supports a number of innovative and interesting applications such as ubiquitous healthcare, entertainment, interactive gaming, and military applications. In this paper, the fundamental mechanisms of WBAN including architecture and topology, wireless implant communication, low-power Medium Access Control (MAC) and routing protocols are reviewed. A comprehensive study of the proposed technologies for WBAN at Physical (PHY), MAC, and Network layers is presented and many useful solutions are discussed for each layer. Finally, numerous WBAN applications are highlighted

    A Survey on Communication Networks for Electric System Automation

    Get PDF
    Published in Computer Networks 50 (2006) 877–897, an Elsevier journal. The definitive version of this publication is available from Science Direct. Digital Object Identifier:10.1016/j.comnet.2006.01.005In today’s competitive electric utility marketplace, reliable and real-time information become the key factor for reliable delivery of power to the end-users, profitability of the electric utility and customer satisfaction. The operational and commercial demands of electric utilities require a high-performance data communication network that supports both existing functionalities and future operational requirements. In this respect, since such a communication network constitutes the core of the electric system automation applications, the design of a cost-effective and reliable network architecture is crucial. In this paper, the opportunities and challenges of a hybrid network architecture are discussed for electric system automation. More specifically, Internet based Virtual Private Networks, power line communications, satellite communications and wireless communications (wireless sensor networks, WiMAX and wireless mesh networks) are described in detail. The motivation of this paper is to provide a better understanding of the hybrid network architecture that can provide heterogeneous electric system automation application requirements. In this regard, our aim is to present a structured framework for electric utilities who plan to utilize new communication technologies for automation and hence, to make the decision making process more effective and direct.This work was supported by NEETRAC under Project #04-157
    • …
    corecore