20 research outputs found

    Advanced photonic and electronic systems WILGA 2016

    Get PDF
    Young Researchers Symposium WILGA on Photonics Applications and Web Engineering has been organized since 1998, two times a year. Subject area of the Wilga Symposium are advanced photonic and electronic systems in all aspects: theoretical, design and application, hardware and software, academic, scientific, research, development, commissioning and industrial, but also educational and development of research and technical staff. Each year, during the international Spring edition, the Wilga Symposium is attended by a few hundred young researchers, graduated M.Sc. students, Ph.D. students, young doctors, young research workers from the R&D institutions, universities, innovative firms, etc. Wilga, gathering through years the organization experience, has turned out to be a perfect relevant information exchange platform between young researchers from Poland with participation  of international guests, all active in the research areas of electron and photon technologies, electronics, photonics, telecommunications, automation, robotics and information technology, but also technical physics. The paper summarizes the achievements of the 38th Spring Edition of 2016 WILGA Symposium, organized in Wilga Village Resort owned by Warsaw University of technology

    Dispositivo de Deteção do Bruxismo do Sono

    Get PDF
    This thesis aims to explore and, ultimately, develop a system capable of monitoring physiological signals to detect bruxism events. Bruxism is a disorder characterized by the habit of pressing and grinding the teeth. These events can either occur during the day (Awake Bruxism) or during the night (Sleep Bruxism). Studies suggest that 20% of the adult population suffer from Awake Bruxism, and 8-16% from Sleep Bruxism. The consequences of this disorder are several, ranging from tooth wear, dental fractures, or abfraction, resulting in headaches, or facial myalgia. This dissertation focuses on the Sleep Bruxism type since it’s harder to detect and treat. First, a study about the evolution of technology in healthcare is carried out, fundamentally about how it was introduced and how did it get to the point it is now. The topic of wearable devices is also explored, in the sense that it’s where the market is going and how these devices can transform healthcare. Then, the study converges on the devices developed especially for bruxism, namely which devices, and what type of techniques are used. Subsequently, the general concept for the system is elaborated, exploring several options both in terms of devices and physiological data to be parameterized. However, some restrictions exist for the construction of the system. For the construction of an intraoral system, the device has to be of small dimensions and with low energy consumption. With these constraints, the system has implemented an Inertial Measurement Unit to estimate the orientation of the patient’s sleeping position, and force sensors to measure the force exerted between the teeth. For compactness, a Systemon-Chip is used, since it includes an ARM Cortex M4 processor, several peripherals, and an RF transceiver in one package. The system is not only responsible for the data acquisition, but also the data transmission. This is accomplished by using Bluetooth Low Energy, which is one of the most common protocols for low-power devices. Customized service is developed for this purpose, consisting of three different characteristics: the force characteristic, the accelerometer characteristic, and the gyroscope characteristic. The reason is for maximizing efficiency. The last step was to develop the prototype, testing its functionalities and try to project next iterations of the prototype

    Interface Circuits for Microsensor Integrated Systems

    Get PDF
    ca. 200 words; this text will present the book in all promotional forms (e.g. flyers). Please describe the book in straightforward and consumer-friendly terms. [Recent advances in sensing technologies, especially those for Microsensor Integrated Systems, have led to several new commercial applications. Among these, low voltage and low power circuit architectures have gained growing attention, being suitable for portable long battery life devices. The aim is to improve the performances of actual interface circuits and systems, both in terms of voltage mode and current mode, in order to overcome the potential problems due to technology scaling and different technology integrations. Related problems, especially those concerning parasitics, lead to a severe interface design attention, especially concerning the analog front-end and novel and smart architecture must be explored and tested, both at simulation and prototype level. Moreover, the growing demand for autonomous systems gets even harder the interface design due to the need of energy-aware cost-effective circuit interfaces integrating, where possible, energy harvesting solutions. The objective of this Special Issue is to explore the potential solutions to overcome actual limitations in sensor interface circuits and systems, especially those for low voltage and low power Microsensor Integrated Systems. The present Special Issue aims to present and highlight the advances and the latest novel and emergent results on this topic, showing best practices, implementations and applications. The Guest Editors invite to submit original research contributions dealing with sensor interfacing related to this specific topic. Additionally, application oriented and review papers are encouraged.

    Sensing and Signal Processing in Smart Healthcare

    Get PDF
    In the last decade, we have witnessed the rapid development of electronic technologies that are transforming our daily lives. Such technologies are often integrated with various sensors that facilitate the collection of human motion and physiological data and are equipped with wireless communication modules such as Bluetooth, radio frequency identification, and near-field communication. In smart healthcare applications, designing ergonomic and intuitive human–computer interfaces is crucial because a system that is not easy to use will create a huge obstacle to adoption and may significantly reduce the efficacy of the solution. Signal and data processing is another important consideration in smart healthcare applications because it must ensure high accuracy with a high level of confidence in order for the applications to be useful for clinicians in making diagnosis and treatment decisions. This Special Issue is a collection of 10 articles selected from a total of 26 contributions. These contributions span the areas of signal processing and smart healthcare systems mostly contributed by authors from Europe, including Italy, Spain, France, Portugal, Romania, Sweden, and Netherlands. Authors from China, Korea, Taiwan, Indonesia, and Ecuador are also included

    Wireless bi-directional data link for an EEG recording system using STM32

    No full text
    A wireless bi-directional data link for an electroencephalogram (EEG) recording system is presented in this paper. The system is mainly composed of a prototype model of an implant and a data recorder. Both the implant and the data recorder use STM32 microcontrollers with an inbuilt radio frequency (RF) transceiver to establish a wireless link between them. The main component of the implant is a mixed-signal EEG acquisition ASIC with 8 channels. The STM32 and the ASIC of the implant module communicate via two SPI interfaces. Optimized software codes for the STM32 microcontrollers have been written to ensure a reliable wireless communication between the implant and the data recorder. A PC is connected to the data recorder which enables the communication by sending the configuration data to the implant. The data received by the data recorder is stored in a PC. The amount of input referred noise of the ASIC present in the output is estimated with the help of MATLAB

    Wearable and BAN Sensors for Physical Rehabilitation and eHealth Architectures

    Get PDF
    The demographic shift of the population towards an increase in the number of elderly citizens, together with the sedentary lifestyle we are adopting, is reflected in the increasingly debilitated physical health of the population. The resulting physical impairments require rehabilitation therapies which may be assisted by the use of wearable sensors or body area network sensors (BANs). The use of novel technology for medical therapies can also contribute to reducing the costs in healthcare systems and decrease patient overflow in medical centers. Sensors are the primary enablers of any wearable medical device, with a central role in eHealth architectures. The accuracy of the acquired data depends on the sensors; hence, when considering wearable and BAN sensing integration, they must be proven to be accurate and reliable solutions. This book is a collection of works focusing on the current state-of-the-art of BANs and wearable sensing devices for physical rehabilitation of impaired or debilitated citizens. The manuscripts that compose this book report on the advances in the research related to different sensing technologies (optical or electronic) and body area network sensors (BANs), their design and implementation, advanced signal processing techniques, and the application of these technologies in areas such as physical rehabilitation, robotics, medical diagnostics, and therapy

    Memorias del Congreso Argentino en Ciencias de la Computación - CACIC 2021

    Get PDF
    Trabajos presentados en el XXVII Congreso Argentino de Ciencias de la Computación (CACIC), celebrado en la ciudad de Salta los días 4 al 8 de octubre de 2021, organizado por la Red de Universidades con Carreras en Informática (RedUNCI) y la Universidad Nacional de Salta (UNSA).Red de Universidades con Carreras en Informátic

    Материалы VI Международной молодежной научной конференции "Математическое и программное обеспечение информационных, технических и экономических систем", Томск, 24-26 мая 2018 г.

    Get PDF
    Сборник содержит материалы VI Всероссийской молодёжной научной конференции «Математическое и программное обеспечение информационных, технических и экономических систем», проводившейся 24–26 мая 2018 г. на базе Института прикладной математики и компьютерных наук Томского государственного университета. Материалы сгруппированы в соответствии с работавшими на конференции секциями
    corecore