124 research outputs found

    Miniaturised Wireless Power Transfer Systems for Neurostimulation: A Review

    Get PDF
    In neurostimulation, wireless power transfer is an efficient technology to overcome several limitations affecting medical devices currently used in clinical practice. Several methods were developed over the years for wireless power transfer. In this review article, we report and discuss the three most relevant methodologies for extremely miniaturised implantable neurostimulator: ultrasound coupling, inductive coupling and capacitive coupling. For each powering method, the discussion starts describing the physical working principle. In particular, we focus on the challenges given by the miniaturisation of the implanted integrated circuits and the related ad-hoc solutions for wireless power transfer. Then, we present recent developments and progresses in wireless power transfer for biomedical applications. Last, we compare each technique based on key performance indicators to highlight the most relevant and innovative solutions suitable for neurostimulation, with the gaze turned towards miniaturisation

    Intra-Body Communications for Nervous System Applications: Current Technologies and Future Directions

    Full text link
    The Internet of Medical Things (IoMT) paradigm will enable next generation healthcare by enhancing human abilities, supporting continuous body monitoring and restoring lost physiological functions due to serious impairments. This paper presents intra-body communication solutions that interconnect implantable devices for application to the nervous system, challenging the specific features of the complex intra-body scenario. The presented approaches include both speculative and implementative methods, ranging from neural signal transmission to testbeds, to be applied to specific neural diseases therapies. Also future directions in this research area are considered to overcome the existing technical challenges mainly associated with miniaturization, power supply, and multi-scale communications.Comment: https://www.sciencedirect.com/science/article/pii/S138912862300163

    Wireless Technologies for Implantable Devices

    Get PDF
    Wireless technologies are incorporated in implantable devices since at least the 1950s. With remote data collection and control of implantable devices, these wireless technologies help researchers and clinicians to better understand diseases and to improve medical treatments. Today, wireless technologies are still more commonly used for research, with limited applications in a number of clinical implantable devices. Recent development and standardization of wireless technologies present a good opportunity for their wider use in other types of implantable devices, which will significantly improve the outcomes of many diseases or injuries. This review briefly describes some common wireless technologies and modern advancements, as well as their strengths and suitability for use in implantable medical devices. The applications of these wireless technologies in treatments of orthopedic and cardiovascular injuries and disorders are described. This review then concludes with a discussion on the technical challenges and potential solutions of implementing wireless technologies in implantable devices

    Ultrasound data communication system for bioelectronic medicines

    Get PDF
    PhD ThesisThe coming years may see the advent of distributed implantable devices to support bioelectronic medicinal treatments. Such treatments could be complementary and, in some cases, may even prove superior to pharmaceutical treatments for certain chronic disease conditions. Therefore, a significant research effort is being undertaken in the bioelectronics domain. Target conditions include diabetes, inflammatory bowel disease, lupus, and arthritis. Modern active medical implantable devices require communications to transmit information to the outside world or other implantable sub-systems. This can include physiological data, diagnostics, and parameters to optimise the therapeutic protocol. However, the communication scheme can be very challenging especially for deeper devices. Challenges include absorption and scattering by tissue, and the need to ensure there are no undesirable heating effects. Wired connectivity is undesirable and tissue absorption of traditional radio frequency and optical methods mean that ultrasound communications have significant potential in this niche. In this thesis, a reliable and efficient ultrasonic communication telemetry is presented. An omnidirectional transducer has been employed to implement intra body communication inside a model of the human body. A prototype has been implemented to evaluate the system performance in saline and up to 30 distance between the transmitter and receiver. Short pulses sequences with guard intervals have been employed to minimise the multipath effect that leads to an increase in the bit and thus packet error rates with distance. Error detection and correction code have been employed to improve communication at a low signal to noise ratio. The data rate is limited to 0.6 due to the necessary guard intervals. Energy per bit and current consumption for the transmitter and receiver main parts are presented and discussed in terms of battery life. Transmission can be achieved at an energy cost of 642 per bit data packet using on/off power cycling in the electronics

    Biointegrated and wirelessly powered implantable brain devices: a review

    Get PDF
    Implantable neural interfacing devices have added significantly to neural engineering by introducing the low-frequency oscillations of small populations of neurons known as local field potential as well as high-frequency action potentials of individual neurons. Regardless of the astounding progression as of late, conventional neural modulating system is still incapable to achieve the desired chronic in vivo implantation. The real constraint emerges from mechanical and physical diffierences between implants and brain tissue that initiates an inflammatory reaction and glial scar formation that reduces the recording and stimulation quality. Furthermore, traditional strategies consisting of rigid and tethered neural devices cause substantial tissue damage and impede the natural behaviour of an animal, thus hindering chronic in vivo measurements. Therefore, enabling fully implantable neural devices, requires biocompatibility, wireless power/data capability, biointegration using thin and flexible electronics, and chronic recording properties. This paper reviews biocompatibility and design approaches for developing biointegrated and wirelessly powered implantable neural devices in animals aimed at long-term neural interfacing and outlines current challenges toward developing the next generation of implantable neural devices

    Design criteria of a transcutaneous power delivery system for implantable devices.

    Get PDF
    Implantable cardiac assist devices such as artificial hearts and blood pumps are a rapidly growing therapy used for treating moderate to severe congestive heart failure. While current treatments offer improved heart failure survival and increased patient functionality with enhanced quality of life, powering these devices are still constraining. In practice, percutaneous cables passing through skin are used for power and control data transmission requiring patients to maintain a sterile dressing on the skin cable-exit site. This contact site limits patient movement as it is vulnerable to wound infection due to trauma and poor healing. As a result, a sterile dressing has to be maintained and nursed regularly for treating the wound. Complications from the exit site infections are a leading cause of death in long-term support with these devices. Wireless power and control transmission systems have been studied and developed over years in order to avoid percutaneous cables while supplying power efficiently to the implanted device. These power systems, commonly named Transcutaneous Energy Transfer (TET) systems, enable power transmission across the skin without direct electrical connectivity to the power source. TET systems use time-varying electromagnetic induction produced by a primary coil that is usually placed near skin outside the body. The induced voltage in an implanted secondary coil is then rectified and regulated to transfer energy to an implanted rechargeable battery in order to power the biomedical load device. Efficient and optimum energy transfer using such transcutaneous methods is more complex for mobile patients due to coupling discrepancies caused by variations in the alignment of the coil. The research studies equivalent maximum power transfer topologies for evaluating voltage gain and coupling link efficiency of TET system. Also, this research adds to previous efforts by generalizing different scenarios of misalignments of different coil size that affects the coupling link. As a whole, this study of geometric coil misalignments reconsiders potential anatomic location for coil placement to optimize TET systems performance in anticipated environment for efficient and safe operation.--Abstract

    A Multi-Dimensional Analysis of a Novel Approach for Wireless Stimulation

    Get PDF
    The elimination of integrated batteries in biomedical implants holds great promise for improving health outcomes in patients with implantable devices. However, despite extensive research in wireless power transfer, achieving efficient power transfer and effective operational range have remained a hindering challenge within anatomical constraints. Objective : We hereby demonstrate an intravascular wireless and batteryless microscale stimulator, designed for (1) low power dissipation via intermittent transmission and (2) reduced fixation mechanical burden via deployment to the anterior cardiac vein (ACV, ∼3.8 mm in diameter). Methods : We introduced a unique coil design circumferentially confined to a 3 mm diameter hollow-cylinder that was driven by a novel transmitter-based control architecture with improved power efficiency. Results : We examined wireless capacity using heterogenous bovine tissue, demonstrating >5 V stimulation threshold with up to 20 mm transmitter-receiver displacement and 20° of misalignment. Feasibility for human use was validated using Finite Element Method (FEM) simulation of the cardiac cycle, guided by pacer phantom-integrated Magnetic Resonance Images (MRI). Conclusion : This system design thus enabled sufficient wireless power transfer in the face of extensive stimulator miniaturization. Significance : Our successful feasibility studies demonstrated the capacity for minimally invasive deployment and low-risk fixation

    A Multi-Dimensional Analysis of a Novel Approach for Wireless Stimulation

    Get PDF
    The elimination of integrated batteries in biomedical implants holds great promise for improving health outcomes in patients with implantable devices. However, despite extensive research in wireless power transfer, achieving efficient power transfer and effective operational range have remained a hindering challenge within anatomical constraints. Objective : We hereby demonstrate an intravascular wireless and batteryless microscale stimulator, designed for (1) low power dissipation via intermittent transmission and (2) reduced fixation mechanical burden via deployment to the anterior cardiac vein (ACV, ∼3.8 mm in diameter). Methods : We introduced a unique coil design circumferentially confined to a 3 mm diameter hollow-cylinder that was driven by a novel transmitter-based control architecture with improved power efficiency. Results : We examined wireless capacity using heterogenous bovine tissue, demonstrating >5 V stimulation threshold with up to 20 mm transmitter-receiver displacement and 20° of misalignment. Feasibility for human use was validated using Finite Element Method (FEM) simulation of the cardiac cycle, guided by pacer phantom-integrated Magnetic Resonance Images (MRI). Conclusion : This system design thus enabled sufficient wireless power transfer in the face of extensive stimulator miniaturization. Significance : Our successful feasibility studies demonstrated the capacity for minimally invasive deployment and low-risk fixation

    Wireless networks of injectable microelectronic stimulators based on rectification of volume conducted high frequency currents

    Get PDF
    Objective. To develop and in vivo demonstrate threadlike wireless implantable neuromuscular microstimulators that are digitally addressable. Approach. These devices perform, through its two electrodes, electronic rectification of innocuous high frequency current bursts delivered by volume conduction via epidermal textile electrodes. By avoiding the need of large components to obtain electrical energy, this approach allows the development of thin devices that can be intramuscularly implanted by minimally invasive procedures such as injection. For compliance with electrical safety standards, this approach requires a minimum distance, in the order of millimeters or a very few centimeters, between the implant electrodes. Additionally, the devices must cause minimal mechanical damage to tissues, avoid dislocation and be adequate for long-term implantation. Considering these requirements, the implants were conceived as tubular and flexible devices with two electrodes at opposite ends and, at the middle section, a hermetic metallic capsule housing the electronics. Main results. The developed implants have a submillimetric diameter (0.97 mm diameter, 35 mm length) and consist of a microcircuit, which contains a single custom-developed integrated circuit, housed within a titanium capsule (0.7 mm diameter, 6.5 mm length), and two platinum–iridium coils that form two electrodes (3 mm length) located at opposite ends of a silicone body. These neuromuscular stimulators are addressable, allowing to establish a network of microstimulators that can be controlled independently. Their operation was demonstrated in an acute study by injecting a few of them in the hind limb of anesthetized rabbits and inducing controlled and independent contractions. Significance. These results show the feasibility of manufacturing threadlike wireless addressable neuromuscular stimulators by using fabrication techniques and materials well established for chronic electronic implants. Although long-term operation still must be demonstrated, the obtained results pave the way to the clinical development of advanced motor neuroprostheses formed by dense networks of such wireless devices.European Research Council (ERC) 724244ICREA under the ICREA Academia programm
    • …
    corecore