33 research outputs found

    Real-time localization using received signal strength

    Get PDF
    Locating and tracking assets in an indoor environment is a fundamental requirement for several applications which include for instance network enabled manufacturing. However, translating time of flight-based GPS technique for indoor solutions has proven very costly and inaccurate primarily due to the need for high resolution clocks and the non-availability of reliable line of sight condition between the transmitter and receiver. In this dissertation, localization and tracking of wireless devices using radio signal strength (RSS) measurements in an indoor environment is undertaken. This dissertation is presented in the form of five papers. The first two papers deal with localization and placement of receivers using a range-based method where the Friis transmission equation is used to relate the variation of the power with radial distance separation between the transmitter and receiver. The third paper introduces the cross correlation based localization methodology. Additionally, this paper also presents localization of passive RFID tags operating at 13.56MHz frequency or less by measuring the cross-correlation in multipath noise from the backscattered signals. The fourth paper extends the cross-correlation based localization algorithm to wireless devices operating at 2.4GHz by exploiting shadow fading cross-correlation. The final paper explores the placement of receivers in the target environment to ensure certain level of localization accuracy under cross-correlation based method. The effectiveness of our localization methodology is demonstrated experimentally by using IEEE 802.15.4 radios operating in fading noise rich environment such as an indoor mall and in a laboratory facility of Missouri University of Science and Technology. Analytical performance guarantees are also included for these methods in the dissertation --Abstract, page iv

    Unsupervised damage clustering in complex aeronautical composite structures monitored by Lamb waves: An inductive approach

    Get PDF
    The authors would like to thank Shawn L. Kiser for his careful proofreading of the manuscript and the useful comments provided.Structural Health Monitoring (SHM), i.e. the action of monitoring structures in real-time and in an automated manner, is a major challenge in several industrial fields such as aeronautic. SHM is by nature a very high dimensional data-driven problem that possesses several specificities when addressed as a machine learning problem. First of all data in damaged cases are rare and very costly as the generation of damaged data is not always possible and simulations are not reliable especially when dealing with complex structures. SHM is thus by nature an unsupervised problem. Furthermore, any incoming sample should be instantaneously clustered and handcrafted damage indexes are commonly used as a first dimension reduction step due to large datasets to be processed. As a consequence, unsupervised dimensionality reduction (DR) techniques that project very high dimensional data into a two or three-dimensional space (such as t-SNE or UMAP) are very appealing in such a context. However, these methods suffer from one major drawback which is that they are unable to cluster any unknown incoming sample. To solve this we propose to add inductive abilities to these well know methods by associating their projection bases with Deep Neural Networks (DNNs). The resulting DNNs are then able to cluster any incoming unknown samples. Based on those tools, a SHM methodology allowing for unsupervised damage clustering with dimensionality reduction is presented here. To demonstrate the effectiveness of the method, results of damage classification on large experimental data sets coming from complex aeronautical composite structures monitored through Lamb waves are shown. Furthermore, several DR techniques have been benchmarked and recommendations are derived. It is demonstrated that the use of raw Lamb wave signals instead of the associated damage indexes is more effective. This non-intuitive result helps to reduce the gap between laboratory research and the actual start-up of SHM activities in industrial applications

    Dimensionality reduction and sparse representations in computer vision

    Get PDF
    The proliferation of camera equipped devices, such as netbooks, smartphones and game stations, has led to a significant increase in the production of visual content. This visual information could be used for understanding the environment and offering a natural interface between the users and their surroundings. However, the massive amounts of data and the high computational cost associated with them, encumbers the transfer of sophisticated vision algorithms to real life systems, especially ones that exhibit resource limitations such as restrictions in available memory, processing power and bandwidth. One approach for tackling these issues is to generate compact and descriptive representations of image data by exploiting inherent redundancies. We propose the investigation of dimensionality reduction and sparse representations in order to accomplish this task. In dimensionality reduction, the aim is to reduce the dimensions of the space where image data reside in order to allow resource constrained systems to handle them and, ideally, provide a more insightful description. This goal is achieved by exploiting the inherent redundancies that many classes of images, such as faces under different illumination conditions and objects from different viewpoints, exhibit. We explore the description of natural images by low dimensional non-linear models called image manifolds and investigate the performance of computer vision tasks such as recognition and classification using these low dimensional models. In addition to dimensionality reduction, we study a novel approach in representing images as a sparse linear combination of dictionary examples. We investigate how sparse image representations can be used for a variety of tasks including low level image modeling and higher level semantic information extraction. Using tools from dimensionality reduction and sparse representation, we propose the application of these methods in three hierarchical image layers, namely low-level features, mid-level structures and high-level attributes. Low level features are image descriptors that can be extracted directly from the raw image pixels and include pixel intensities, histograms, and gradients. In the first part of this work, we explore how various techniques in dimensionality reduction, ranging from traditional image compression to the recently proposed Random Projections method, affect the performance of computer vision algorithms such as face detection and face recognition. In addition, we discuss a method that is able to increase the spatial resolution of a single image, without using any training examples, according to the sparse representations framework. In the second part, we explore mid-level structures, including image manifolds and sparse models, produced by abstracting information from low-level features and offer compact modeling of high dimensional data. We propose novel techniques for generating more descriptive image representations and investigate their application in face recognition and object tracking. In the third part of this work, we propose the investigation of a novel framework for representing the semantic contents of images. This framework employs high level semantic attributes that aim to bridge the gap between the visual information of an image and its textual description by utilizing low level features and mid level structures. This innovative paradigm offers revolutionary possibilities including recognizing the category of an object from purely textual information without providing any explicit visual example

    Human sensing indoors in RF utilising unlabeled sensor streams

    Get PDF
    Indoor human sensing in radio frequencies is crucial for non-invasive, privacy-preserving digital healthcare, and machine learning is the backbone of such systems. Changes in the environment affect negatively the quality of learned mappings, which necessitates a semi-supervised approach that makes use of the unlabeled data stream to allow the learner to refine their hypothesis with time.We first explore the ambulation classification problem with frequency modulated continuous wave (FMCW) radar, replacing manual feature engineering by inductive bias in architectural choices of the neural network. We demonstrate that key ambulations: walk, bend, sit to stand and stand to sit can be distinguished with high accuracy. We then apply variational autoencoders to explore unsupervised localisation in synthetic grayscale images, finding that the goal is achievable with the choice of encoder that encodes temporal structure.Next, we evaluate temporal contrastive learning as the method of using unlabeled sensor streams in fingerprinting localisation, finding that it is a reliable method of defining a notion of pairwise distance on the data in that it improves the classification using the nearest neighbour classifier by both reducing the number of other-class items in same-class clusters, and increasing the pairwise distance contrast. Compared to the state of the art in fingerprinting localisation indoors, our contribution is that we successfully address the unsupervised domain adaptation problem.Finally, we raise the hypothesis that some knowledge can be shared between learners in different houses in a privacy-preserving manner. We adapt federated learning (FL) to the multi-residence indoor localisation scenario, which has not been done before, and propose a localfine-tuning algorithm with acceptance based on local validation error improvement. We find the tuned FL each client has a better personalised model compared to benchmark FL while keeping learning dynamics smooth for all clients

    Cyber-Physical Systems for Smart Water Networks: A Review

    Get PDF
    There is a growing demand to equip Smart Water Networks (SWN) with advanced sensing and computation capabilities in order to detect anomalies and apply autonomous event-triggered control. Cyber-Physical Systems (CPSs) have emerged as an important research area capable of intelligently sensing the state of SWN and reacting autonomously in scenarios of unexpected crisis development. Through computational algorithms, CPSs can integrate physical components of SWN, such as sensors and actuators, and provide technological frameworks for data analytics, pertinent decision making, and control. The development of CPSs in SWN requires the collaboration of diverse scientific disciplines such as civil, hydraulics, electronics, environment, computer science, optimization, communication, and control theory. For efficient and successful deployment of CPS in SWN, there is a need for a common methodology in terms of design approaches that can involve various scientific disciplines. This paper reviews the state of the art, challenges, and opportunities for CPSs, that could be explored to design the intelligent sensing, communication, and control capabilities of CPS for SWN. In addition, we look at the challenges and solutions in developing a computational framework from the perspectives of machine learning, optimization, and control theory for SWN.acceptedVersio

    Geometric Methods in Machine Learning and Data Mining

    Get PDF
    In machine learning, the standard goal of is to find an appropriate statistical model from a model space based on the training data from a data space; while in data mining, the goal is to find interesting patterns in the data from a data space. In both fields, these spaces carry geometric structures that can be exploited using methods that make use of these geometric structures (we shall call them geometric methods), or the problems themselves can be formulated in a way that naturally appeal to these methods. In such cases, studying these geometric structures and then using appropriate geometric methods not only gives insight into existing algorithms, but also helps build new and better algorithms. In my research, I develop methods that exploit geometric structure of problems for a variety of machine learning and data mining problems, and provide strong theoretical and empirical evidence in favor of using them. My dissertation is divided into two parts. In the first part, I develop algorithms to solve a well known problem in data mining i.e. distance embedding problem. In particular, I use tools from computational geometry to build a unified framework for solving a distance embedding problem known as multidimensional scaling (MDS). This geometry-inspired framework results in algorithms that can solve different variants of MDS better than previous state-of-the-art methods. In addition, these algorithms come with many other attractive properties: they are simple, intuitive, easily parallelizable, scalable, and can handle missing data. Furthermore, I extend my unified MDS framework to build scalable algorithms for dimensionality reduction, and also to solve a sensor network localization problem for mobile sensors. Experimental results show the effectiveness of this framework across all problems. In the second part of my dissertation, I turn to problems in machine learning, in particular, use geometry to reason about conjugate priors, develop a model that hybridizes between discriminative and generative frameworks, and build a new set of generative-process-driven kernels. More specifically, this part of my dissertation is devoted to the study of the geometry of the space of probabilistic models associated with statistical generative processes. This study --- based on the theory well grounded in information geometry --- allows me to reason about the appropriateness of conjugate priors from a geometric perspective, and hence gain insight into the large number of existing models that rely on these priors. Furthermore, I use this study to build hybrid models more naturally i.e., by combining discriminative and generative methods using the geometry underlying them, and also to build a family of kernels called generative kernels that can be used as off-the-shelf tool in any kernel learning method such as support vector machines. My experiments of generative kernels demonstrate their effectiveness providing further evidence in favor of using geometric methods

    A Survey of Multimodal Information Fusion for Smart Healthcare: Mapping the Journey from Data to Wisdom

    Full text link
    Multimodal medical data fusion has emerged as a transformative approach in smart healthcare, enabling a comprehensive understanding of patient health and personalized treatment plans. In this paper, a journey from data to information to knowledge to wisdom (DIKW) is explored through multimodal fusion for smart healthcare. We present a comprehensive review of multimodal medical data fusion focused on the integration of various data modalities. The review explores different approaches such as feature selection, rule-based systems, machine learning, deep learning, and natural language processing, for fusing and analyzing multimodal data. This paper also highlights the challenges associated with multimodal fusion in healthcare. By synthesizing the reviewed frameworks and theories, it proposes a generic framework for multimodal medical data fusion that aligns with the DIKW model. Moreover, it discusses future directions related to the four pillars of healthcare: Predictive, Preventive, Personalized, and Participatory approaches. The components of the comprehensive survey presented in this paper form the foundation for more successful implementation of multimodal fusion in smart healthcare. Our findings can guide researchers and practitioners in leveraging the power of multimodal fusion with the state-of-the-art approaches to revolutionize healthcare and improve patient outcomes.Comment: This work has been submitted to the ELSEVIER for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Guidage non-intrusif d'un bras robotique à l'aide d'un bracelet myoélectrique à électrode sèche

    Get PDF
    Depuis plusieurs années la robotique est vue comme une solution clef pour améliorer la qualité de vie des personnes ayant subi une amputation. Pour créer de nouvelles prothèses intelligentes qui peuvent être facilement intégrées à la vie quotidienne et acceptée par ces personnes, celles-ci doivent être non-intrusives, fiables et peu coûteuses. L’électromyographie de surface fournit une interface intuitive et non intrusive basée sur l’activité musculaire de l’utilisateur permettant d’interagir avec des robots. Cependant, malgré des recherches approfondies dans le domaine de la classification des signaux sEMG, les classificateurs actuels manquent toujours de fiabilité, car ils ne sont pas robustes face au bruit à court terme (par exemple, petit déplacement des électrodes, fatigue musculaire) ou à long terme (par exemple, changement de la masse musculaire et des tissus adipeux) et requiert donc de recalibrer le classifieur de façon périodique. L’objectif de mon projet de recherche est de proposer une interface myoélectrique humain-robot basé sur des algorithmes d’apprentissage par transfert et d’adaptation de domaine afin d’augmenter la fiabilité du système à long-terme, tout en minimisant l’intrusivité (au niveau du temps de préparation) de ce genre de système. L’aspect non intrusif est obtenu en utilisant un bracelet à électrode sèche possédant dix canaux. Ce bracelet (3DC Armband) est de notre (Docteur Gabriel Gagnon-Turcotte, mes co-directeurs et moi-même) conception et a été réalisé durant mon doctorat. À l’heure d’écrire ces lignes, le 3DC Armband est le bracelet sans fil pour l’enregistrement de signaux sEMG le plus performant disponible. Contrairement aux dispositifs utilisant des électrodes à base de gel qui nécessitent un rasage de l’avant-bras, un nettoyage de la zone de placement et l’application d’un gel conducteur avant l’utilisation, le brassard du 3DC peut simplement être placé sur l’avant-bras sans aucune préparation. Cependant, cette facilité d’utilisation entraîne une diminution de la qualité de l’information du signal. Cette diminution provient du fait que les électrodes sèches obtiennent un signal plus bruité que celle à base de gel. En outre, des méthodes invasives peuvent réduire les déplacements d’électrodes lors de l’utilisation, contrairement au brassard. Pour remédier à cette dégradation de l’information, le projet de recherche s’appuiera sur l’apprentissage profond, et plus précisément sur les réseaux convolutionels. Le projet de recherche a été divisé en trois phases. La première porte sur la conception d’un classifieur permettant la reconnaissance de gestes de la main en temps réel. La deuxième porte sur l’implémentation d’un algorithme d’apprentissage par transfert afin de pouvoir profiter des données provenant d’autres personnes, permettant ainsi d’améliorer la classification des mouvements de la main pour un nouvel individu tout en diminuant le temps de préparation nécessaire pour utiliser le système. La troisième phase consiste en l’élaboration et l’implémentation des algorithmes d’adaptation de domaine et d’apprentissage faiblement supervisé afin de créer un classifieur qui soit robuste au changement à long terme.For several years, robotics has been seen as a key solution to improve the quality of life of people living with upper-limb disabilities. To create new, smart prostheses that can easily be integrated into everyday life, they must be non-intrusive, reliable and inexpensive. Surface electromyography provides an intuitive interface based on a user’s muscle activity to interact with robots. However, despite extensive research in the field of sEMG signal classification, current classifiers still lack reliability due to their lack of robustness to short-term (e.g. small electrode displacement, muscle fatigue) or long-term (e.g. change in muscle mass and adipose tissue) noise. In practice, this mean that to be useful, classifier needs to be periodically re-calibrated, a time consuming process. The goal of my research project is to proposes a human-robot myoelectric interface based on transfer learning and domain adaptation algorithms to increase the reliability of the system in the long term, while at the same time reducing the intrusiveness (in terms of hardware and preparation time) of this kind of systems. The non-intrusive aspect is achieved from a dry-electrode armband featuring ten channels. This armband, named the 3DC Armband is from our (Dr. Gabriel Gagnon-Turcotte, my co-directors and myself) conception and was realized during my doctorate. At the time of writing, the 3DC Armband offers the best performance for currently available dry-electrodes, surface electromyographic armbands. Unlike gel-based electrodes which require intrusive skin preparation (i.e. shaving, cleaning the skin and applying conductive gel), the 3DC Armband can simply be placed on the forearm without any preparation. However, this ease of use results in a decrease in the quality of information. This decrease is due to the fact that the signal recorded by dry electrodes is inherently noisier than gel-based ones. In addition, other systems use invasive methods (intramuscular electromyography) to capture a cleaner signal and reduce the source of noises (e.g. electrode shift). To remedy this degradation of information resulting from the non-intrusiveness of the armband, this research project will rely on deep learning, and more specifically on convolutional networks. The research project was divided into three phases. The first is the design of a classifier allowing the recognition of hand gestures in real-time. The second is the implementation of a transfer learning algorithm to take advantage of the data recorded across multiple users, thereby improving the system’s accuracy, while decreasing the time required to use the system. The third phase is the development and implementation of a domain adaptation and self-supervised learning to enhance the classifier’s robustness to long-term changes
    corecore