18 research outputs found

    Workload Cluster Balance Algorithm to Improve Wireless Sensor Network Performance

    Get PDF
    Wireless sensor Networks (WSNs) became in one of the important technologies in our days in which it is applied in many applications and domains. The low cost technology of the WSNs is the first obstacle to improve performance in these applications. However, the usual methods of routing algorithm cannot be applied in WSNs. Consequently, an adaptive routing algorithm is critical issue in the current deployment of WSN applications. The main contribution of this paper is to develop a new routing protocol that address performance challenges in WSNs this will consequent extend the network lifetime of WSN. Moreover, this proposed algorithm uses a new cluster system to define a route from source node to sink node in which the balance load cluster routing algorithm consists to balance the workload between the different nodes to keep the lifetime for the whole network. As a result, the proposed algorithm improve the network lifetime by 22% compare to existing algorithms and the average of the energy consumption is decreased by 18%

    A Cooja-based tool for coverage and fifetime evaluation in an in-building sensor network.

    Get PDF
    Contiki’s Cooja is a very popular wireless sensor network (WSN) simulator, but it lacks support for modelling sensing coverage, focusing instead on network connectivity and protocol performance. However, in practice, it is the ability of a sensor network to provide a satisfactory level of coverage that defines its ultimate utility for end-users. We introduce WSN-Maintain, a Cooja-based tool for coverage and network lifetime evaluation in an in-building WSN. To extend the network lifetime, but still maintain the required quality of coverage, the tool finds coverage redundant nodes, puts them to sleep and automatically turns them on when active nodes fail and coverage quality decreases. WSN-Maintain together with Cooja allow us to evaluate different approaches to maintain coverage. As use cases to the tool, we implement two redundant node algorithms: greedy-maintain, a centralised algorithm, and local-maintain, a localised algorithm to configure the initial network and to turn on redundant nodes. Using data from five real deployments, we show that our tool with simple redundant node algorithms and reading correlation can improve energy efficiency by putting more nodes to sleep

    INDIGO: a generalized model and framework for performance prediction of data dissemination

    Get PDF
    According to recent studies, an enormous rise in location-based mobile services is expected in future. People are interested in getting and acting on the localized information retrieved from their vicinity like local events, shopping offers, local food, etc. These studies also suggested that local businesses intend to maximize the reach of their localized offers/advertisements by pushing them to the maxi- mum number of interested people. The scope of such localized services can be augmented by leveraging the capabilities of smartphones through the dissemination of such information to other interested people. To enable local businesses (or publishers) of localized services to take in- formed decision and assess the performance of their dissemination-based localized services in advance, we need to predict the performance of data dissemination in complex real-world scenarios. Some of the questions relevant to publishers could be the maximum time required to disseminate information, best relays to maximize information dissemination etc. This thesis addresses these questions and provides a solution called INDIGO that enables the prediction of data dissemination performance based on the availability of physical and social proximity information among people by collectively considering different real-world aspects of data dissemination process. INDIGO empowers publishers to assess the performance of their localized dissemination based services in advance both in physical as well as the online social world. It provides a solution called INDIGO–Physical for the cases where physical proximity plays the fundamental role and enables the tighter prediction of data dissemination time and prediction of best relays under real-world mobility, communication and data dissemination strategy aspects. Further, this thesis also contributes in providing the performance prediction of data dissemination in large-scale online social networks where the social proximity is prominent using INDIGO–OSN part of the INDIGO framework under different real-world dissemination aspects like heterogeneous activity of users, type of information that needs to be disseminated, friendship ties and the content of the published online activities. INDIGO is the first work that provides a set of solutions and enables publishers to predict the performance of their localized dissemination based services based on the availability of physical and social proximity information among people and different real-world aspects of data dissemination process in both physical and online social networks. INDIGO outperforms the existing works for physical proximity by providing 5 times tighter upper bound of data dissemination time under real-world data dissemination aspects. Further, for social proximity, INDIGO is able to predict the data dissemination with 90% accuracy and differently, from other works, it also provides the trade-off between high prediction accuracy and privacy by introducing the feature planes from an online social networks

    Energy Neutral Design of Embedded Systems for Resource Constrained Monitoring Applications

    Get PDF
    Automatic monitoring of environments, resouces and human processes are crucial and foundamental tasks to improve people's quality of life and to safeguard the natural environment. Today, new technologies give us the possibility to shape a greener and safer future. The more specialized is the kind of monitoring we want to achieve, more tight are the constraints in terms of reliability, low energy and maintenance-free autonomy. The challenge in case of tight energy constraints is to find new techniques to save as much power as possible or to retrieve it from the very same environment where the system operates, towards the realization of energy neutral embedded monitoring systems. Energy efficiency and battery autonomy of such devices are still the major problem impacting reliability and penetration of such systems in risk-related activities of our daily life. Energy management must not be optimized to the detriment of the quality of monitoring and sensors can not be operated without supply. In this thesis, I present different embedded system designs to bridge this gap, both from the hardware and software sides, considering specific resource constrained scenarios as case studies that have been used to develop solutions with much broader validity. Results achieved demonstrate that energy neutrality in monitoring under resource constrained conditions can be obtained without compromising efficiency and reliability of the outcomes

    Secure Multi-Purpose Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSNs) were made possible around the late 1990s by industry scale availability of small and energy efficient microcontrollers and radio interfaces. Application areas for WSNs range from agriculture to health care and emergency response scenarios. Depending on the scenario a sensor network can span from some rooms to an area of several square miles in size and so the number of sensor nodes can vary from a fistful of nodes to hundreds or thousands. Sensor nodes are composed from a set of building blocks: processing, communication, sensing/actuating and a power supply. The power supply is usually a battery pack. Especially these limited energy resources make it tremendously important to save resources to achieve a long lifetime. Today’s WSNs are usually planned and developed to satisfy only one application, and they are controlled by a single user. But, with the Internet of Things approaching, more and more sensor networks will be used for multiple tasks simultaneously and are reaching larger sizes. As sensor networks grow it becomes mandatory to localize traffic, both for energy conservation as well as security. Additionally, the broadcast medium of the wireless channel of WSNs allows an adversary all sorts of attacks, like eavesdropping, replaying messages, and denial of service attacks. In large or unattended networks it is even possible to physically attack the hardware of a sensor node to gain access to its firmware and cryptographic keys. In this work we propose the Scopes Framework and the security enhancement Sec- Scopes. The Scopes Framework introduces dynamic partitioning of a WSN with support for multiple in-network tasks. SecScopes enables secure access control, key exchange and communication. The partitioning is done by a scoping mechanism which allows the dynamic defini- tion of subsets of sensor nodes. The Scopes Framework supports in-network tasks by managing network connections for each task, and allowing the selection of efficient routing algorithms. To allows access control on a partition of the network we introduce attribute-based encryption in sensor networks. Secure key exchange is also based on this encryption scheme. To secure communication more efficient symmetric cryptography is employed. With the Scopes Framework we provide a modular and flexible architecture that can be adjusted to the needs of different scenarios. We present a detailed evaluation of the performance of the framework and compare and discuss the results for the different stages of the framework. The results of the evaluation show the general feasibility of the approach, in spite of the adverse resource constraints

    The "Smart Ring" Experience in l'Aquila (Italy): Integrating Smart Mobility Public Services with Air Quality Indexes

    Get PDF
    This work presents the "City Dynamics and Smart Environment" activities of the Smart Ring project, a model for the smart city, based on the integration of sustainable urban transport services and environmental monitoring over a 4–5-km circular path, the "Smart Ring", around the historical center of l'Aquila (Italy). We describe our pilot experience performed during an experimental on-demand public service electric bus, "SmartBus", which was equipped with a multi-parametric air quality low-cost gas electrochemical sensor platform, "NASUS IV". For five days (28–29 August 2014 and 1–3 September 2014), the sensor platform was installed inside the SmartBus and measured air quality gas compounds (nitrogen dioxide, carbon oxide, sulfur dioxide, hydrogen sulfide) during the service. Data were collected and analyzed on the bases of an air quality index, which provided qualitative insights on the air status potentially experienced by the users. The results obtained are in agreement with the synoptic meteorological conditions, the urban background air quality reference measurements and the potential traffic flow variations. Furthermore, they indicated that the air quality status was influenced by the gas component NO 2 , followed by H 2 S, SO 2 and CO. We discuss the features of our campaign, and we highlight the potential, limitations and key factors to consider for future project designs

    Design of advanced benchmarks and analytical methods for RF-based indoor localization solutions

    Get PDF

    Monitoring Co dan Deteksi Dini Kebocoran Gas Lpg pada Perumahan Menggunakan Wireless Sensor Network

    Full text link
    Ancaman bahaya pada lingkungan Perumahan antara lain berasal dari kebocoran tabung gas LPG dan pencemaran gas karbonmonoksida (CO). Gas CO sangat sulit dikenali oleh manusia dan jika masuk ke tubuh manusia pada konsentrasi tertentu akan berdampak buruk terhadap kesehatan. Untuk itu dibutuhkan suatu sistem yang mampu memonitor besarnya konsentrasi gas CO di dalam ruangan dan terintegrasi dengan deteksi dini kebocoran LPG. Pada penelitian ini, dirancang sistem monitoring CO dan deteksi dini kebocoran LPG berbasis wireless sensor network (WSN) dengan menggunakan standar komunikasi zigbee. Ada 3 titik WSN yang membentuk jaringan bertopologi bus dan star. Sensor yang digunakan adalah LM35DZ sebagai pembaca suhu, HSM 20-G sebagai pembaca kelembaban, TGS 2600 sebagai pembaca gas CO, dan MQ-4 sebagai detektor gas LPG. Data pembacaan node-node sensor terkumpul pada node kordinator yang terhubung pada server. Data pada server ditampilkan dalam bentuk tabel dan grafik kemudian dikirimkan kepada user menggunakan komunikasi G-Talk. Jangkauan pengiriman data antar node sejauh ± 53 meter, dimana rata-rata error pembacaan sensor TGS 2600 sebesar 4,414 %. Jarak yang ideal dan aman antara sensor dengan tabung gas LPG adalah 25 cm, dan waktu untuk mendeteksi kebocoran gas LPG ± 12 detik
    corecore