11 research outputs found

    Self-Evaluation Applied Mathematics 2003-2008 University of Twente

    Get PDF
    This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008

    LoRa scalability : a simulation model based on interference measurements

    Get PDF
    LoRa is a long-range, low power, low bit rate and single-hop wireless communication technology. It is intended to be used in Internet of Things (IoT) applications involving battery-powered devices with low throughput requirements. A LoRaWAN network consists of multiple end nodes that communicate with one or more gateways. These gateways act like a transparent bridge towards a common network server. The amount of end devices and their throughput requirements will have an impact on the performance of the LoRaWAN network. This study investigates the scalability in terms of the number of end devices per gateway of single-gateway LoRaWAN deployments. First, we determine the intra-technology interference behavior with two physical end nodes, by checking the impact of an interfering node on a transmitting node. Measurements show that even under concurrent transmission, one of the packets can be received under certain conditions. Based on these measurements, we create a simulation model for assessing the scalability of a single gateway LoRaWAN network. We show that when the number of nodes increases up to 1000 per gateway, the losses will be up to 32%. In such a case, pure Aloha will have around 90% losses. However, when the duty cycle of the application layer becomes lower than the allowed radio duty cycle of 1%, losses will be even lower. We also show network scalability simulation results for some IoT use cases based on real data

    Towards reliable communication in low-power wireless body area networks

    Get PDF
    Es wird zunehmend die Ansicht vertreten, dass tragbare Computer und Sensoren neue Anwendungen in den Bereichen Gesundheitswesen, personalisierte Fitness oder erweiterte Realität ermöglichen werden. Die am Körper getragenen Geräte sind dabei mithilfe eines Wireless Body Area Network (WBAN) verbunden, d.h. es wird drahtlose Kommunikation statt eines drahtgebundenen Kanals eingesetzt. Der drahtlose Kanal ist jedoch typischerweise ein eher instabiles Kommunikationsmedium und die Einsatzbedingungen von WBANs sind besonders schwierig: Einerseits wird die Kanalqualität stark von den physischen Bewegungen der Person beeinflusst, andererseits werden WBANs häufig in lizenzfreien Funkbändern eingesetzt und sind daher Störungen von anderen drahtlosen Geräten ausgesetzt. Oft benötigen WBAN Anwendungen aber eine zuverlässige Datenübertragung. Das erste Ziel dieser Arbeit ist es, ein besseres Verständnis dafür zu schaffen, wie sich die spezifischen Einsatzbedingungen von WBANs auf die intra-WBAN Kommunikation auswirken. So wird zum Beispiel analysiert, welchen Einfluss die Platzierung der Geräte auf der Oberfläche des menschlichen Körpers und die Mobilität des Benutzers haben. Es wird nachgewiesen, dass während regelmäßiger Aktivitäten wie Laufen die empfangene Signalstärke stark schwankt, gleichzeitig aber Signalstärke-Spitzen oft einem regulären Muster folgen. Außerdem wird gezeigt, dass in urbanen Umgebungen die Effekte von 2.4 GHz Radio Frequency (RF) Interferenz im Vergleich zu den Auswirkungen von fading (Schwankungen der empfangenen Signalstärke) eher gering sind. Allerdings führt RF Interferenz dazu, dass häufiger Bündelfehler auftreten, d.h. Fehler zeitlich korrelieren. Dies kann insbesondere in Anwendungen, die eine geringe Übertragungslatenz benötigen, problematisch sein. Der zweite Teil dieser Arbeit beschäftigt sich mit der Analyse von Verfahren, die potentiell die Zuverlässigkeit der Kommunikation in WBANs erhöhen, ohne dass wesentlich mehr Energie verbraucht wird. Zunächst wird der Trade-off zwischen Übertragungslatenz und der Zuverlässigkeit der Kommunikation analysiert. Diese Analyse basiert auf einem neuen Paket-Scheduling Algorithmus, der einen Beschleunigungssensor nutzt, um die WBAN Kommunikation auf die physischen Bewegungen der Person abzustimmen. Die Analyse zeigt, dass unzuverlässige Kommunikationsverbindungen oft zuverlässig werden, wenn Pakete während vorhergesagter Signalstärke-Spitzen gesendet werden. Ferner wird analysiert, inwiefern die Robustheit gegen 2.4 GHz RF Interferenz verbessert werden kann. Dazu werden zwei Verfahren betrachtet: Ein bereits existierendes Verfahren, das periodisch einen Wechsel der Übertragungsfrequenz durchführt (channel hopping) und ein neues Verfahren, das durch RF Interferenz entstandene Bitfehler reparieren kann, indem der Inhalt mehrerer fehlerhafter Pakete kombiniert wird (packet combining). Eine Schlussfolgerung ist, dass Frequenzdiversität zwar das Auftreten von Bündelfehlern reduzieren kann, dass jedoch die statische Auswahl eines Kanals am oberen Ende des 2.4 GHz Bandes häufig schon eine akzeptable Abhilfe gegen RF Interferenz darstellt.There is a growing belief that wearable computers and sensors will enable new applications in areas such as healthcare, personal fitness or augmented reality. The devices are attached to a person and connected through a Wireless Body Area Network (WBAN), which replaces the wires of traditional monitoring systems by wireless communication. This comes, however, at the cost of turning a reliable communication channel into an unreliable one. The wireless channel is typically a rather unstable medium for communication and the conditions under which WBANs have to operate are particularly harsh: not only is the channel strongly influenced by the movements of the person, but WBANs also often operate in unlicensed frequency bands and may therefore be exposed to a significant amount of interference from other wireless devices. Yet, many envisioned WBAN applications require reliable data transmission. The goals of this thesis are twofold: first, we aim at establishing a better understanding of how the specific WBAN operating conditions, such as node placement on the human body surface and user mobility, impact intra-WBAN communication. We show that during periodic activities like walking the received signal strength on an on-body communication link fluctuates strongly, but signal strength peaks often follow a regular pattern. Furthermore, we find that in comparison to the effects of fading 2.4 GHz Radio Frequency (RF) interference causes relatively little packet loss - however, urban 2.4 GHz RF noise is bursty (correlated in time), which may be problematic for applications with low latency bounds. The second goal of this thesis is to analyze how communication reliability in WBANs can be improved without sacrificing a significant amount of additional energy. To this end, we first explore the trade-off between communication latency and communication reliability. This analysis is based on a novel packet scheduling algorithm, which makes use of an accelerometer to couple WBAN communication with the movement patterns of the user. The analysis shows that unreliable links can often be made reliable if packets are transmitted at predicted signal strength peaks. In addition, we analyze to what extent two mechanisms can improve robustness against 2.4 GHz RF interference when adopted in a WBAN context: we analyze the benefits of channel hopping, and we examine how the packet retransmission process can be made more efficient by using a novel packet combining algorithm that allows to repair packets corrupted by RF interference. One of the conclusions is that while frequency agility may decrease "burstiness" of errors the static selection of a channel at the upper end of the 2.4 GHz band often already represents a good remedy against RF interference

    Smart Sound Control in Acoustic Sensor Networks: a Perceptual Perspective

    Full text link
    [ES] Los sistemas de audio han experimentado un gran desarrollo en los últimos años gracias al aumento de dispositivos con procesadores de alto rendimiento capaces de realizar un procesamiento cada vez más eficiente. Además, las comunicaciones inalámbricas permiten a los dispositivos de una red estar ubicados en diferentes lugares sin limitaciones físicas. La combinación de estas tecnologías ha dado lugar a la aparición de las redes de sensores acústicos (ASN). Una ASN está compuesta por nodos equipados con transductores de audio, como micrófonos o altavoces. En el caso de la monitorización acústica del campo, sólo es necesario incorporar sensores acústicos a los nodos ASN. Sin embargo, en el caso de las aplicaciones de control, los nodos deben interactuar con el campo acústico a través de altavoces. La ASN puede implementarse mediante dispositivos de bajo coste, como Raspberry Pi o dispositivos móviles, capaces de gestionar varios micrófonos y altavoces y de ofrecer una buena capacidad de cálculo. Además, estos dispositivos pueden comunicarse mediante conexiones inalámbricas, como Wi-Fi o Bluetooth. Por lo tanto, en esta tesis, se propone una ASN compuesta por dispositivos móviles conectados a altavoces inalámbricos mediante un enlace Bluetooth. Además, el problema de la sincronización entre los dispositivos de una ASN es uno de los principales retos a abordar, ya que el rendimiento del procesamiento de audio es muy sensible a la falta de sincronismo. Por lo tanto, también se lleva a cabo un análisis del problema de sincronización entre dispositivos conectados a altavoces inalámbricos en una ASN. En este sentido, una de las principales aportaciones es el análisis de la latencia de audio cuando los nodos acústicos de la ASN están formados por dispositivos móviles que se comunican altavoces mediante enlaces Bluetooth. Una segunda contribución significativa de esta tesis es la implementación de un método para sincronizar los diferentes dispositivos de una ASN, junto con un estudio de sus limitaciones. Por último, se ha introducido el método propuesto para implementar aplicaciones de zonas sonoras personales (PSZ). Por lo tanto, la implementación y el análisis del rendimiento de diferentes aplicaciones de audio sobre una ASN compuesta por dispositivos móviles y altavoces inalámbricos es también una contribución significativa en el área de las ASN. Cuando el entorno acústico afecta negativamente a la percepción de la señal de audio emitida por los altavoces de la ASN, se uti­lizan técnicas de ecualización para mejorar la percepción de la señal de audio. Para ello, en esta tesis se implementa un sistema de ecualización inteligente. Para ello, se emplean algoritmos psicoacústicos para implementar un procesamiento inteligente basado en el sis­tema auditivo humano capaz de adaptarse a los cambios del entorno. Por ello, otra contribución importante de esta tesis es el análisis del enmas­caramiento espectral entre dos sonidos complejos. Este análisis permitirá calcular el umbral de enmascaramiento de un sonido con más precisión que los métodos utilizados actualmente. Este método se utiliza para implementar una aplicación de ecualización perceptiva que pretende mejorar la percepción de la señal de audio en presencia de un ruido ambien­tal. Para ello, esta tesis propone dos algoritmos de ecualización diferentes: 1) la pre-ecualización de la señal de audio para que se perciba por encima del umbral de enmascaramiento del ruido ambiental y 2) diseñar un con­trol de ruido ambiental perceptivo en los sistemas de ecualización activa de ruido (ANE), para que el nivel de ruido ambiental percibido esté por debajo del umbral de enmascaramiento de la señal de audio. Por lo tanto, la ultima aportación de esta tesis es la implementación de una aplicación de ecualización perceptiva con los dos diferentes algorit­mos de ecualización embebidos y el análisis de su rendimiento a través del banco de pruebas realizado en el laboratorio GTAC-iTEAM.[CA] El sistemes de so han experimentat un gran desenvolupament en els últims anys gràcies a l'augment de dispositius amb processadors d'alt rendiment capaços de realitzar un processament d'àudio cada vegada més eficient. D'altra banda, l'expansió de les comunicacions inalàmbriques ha permès implementar xarxes en les quals els dispositius poden estar situats a difer­ents llocs sense limitacions físiques. La combinació d'aquestes tecnologies ha donat lloc a l'aparició de les xarxes de sensors acústics (ASN). Una ASN està composta per nodes equipats amb transductors d'àudio, com micr`ofons o altaveus. En el cas del monitoratge del camp acústic, només cal incorporar sensors acústics als nodes de l'ASN. No obstant això, en el cas de les aplicacions de control, els nodes han d'interactuar amb el camp acústic a través d'altaveus. Una ASN pot implementar-se mitjant¿cant dispositius de baix cost, com ara Raspberry Pi o dispositius mòbils, capaços de gestionar di­versos micròfons i altaveus i d'oferir una bona capacitat computacional. A més, aquests dispositius poden comunicar-se a través de connexions inalàmbriques, com Wi-Fi o Bluetooth. Per això, en aquesta tesi es proposa una ASN composta per dispositius mòbils connectats a altaveus inalàmbrics a través d'un enllaç Bluetooth. El problema de la sincronització entre els dispositius d'una ASN és un dels principals reptes a abordar ja que el rendiment del processament d'àudio és molt sensible a la falta de sincronisme. Per tant, també es duu a terme una anàlisi profunda del problema de la sincronització entre els dispositius comercials connectats als altaveus inalàmbrics en una ASN. En aquest sentit, una de les principals contribucions és l'anàlisi de la latència d'àudio quan els nodes acústics en l'ASN estan compostos per dispositius mòbils que es comuniquen amb els altaveus corresponents mitjançant enllaços Bluetooth. Una segona contribuciò sig­nificativa d'aquesta tesi és la implementació d'un mètode per sincronitzar els diferents dispositius d'una ASN, juntament amb un estudi de les seves limitacions. Finalment, s'ha introduït el mètode proposat per implemen­tar aplicacions de zones de so personal. Per tant, la implementació i l'anàlisi del rendiment de diferents aplicacions d'àudio sobre una ASN composta per dispositius mòbils i al­taveus inalàmbrics és també una contribució significativa a l'àrea de les ASN. Quan l'entorn acústic afecta negativament a la percepció del senyal d'àudio emesa pels altaveus de l'ASN, es fan servir tècniques d'equalització per a millorar la percepció del senyal d'àudio. En consequència, en aquesta tesi s'implementa un sistema d'equalització intel·ligent. Per això, s'utilitzen algoritmes psicoacústics per implementar un processament intel·ligent basat en el sistema audi­tiu humà capaç d'adaptar-se als canvis de l'entorn. Per aquest motiu, una altra contribució important d'aquesta tesi és l'anàlisi de l'emmascarament espectral entre dos sons complexos. Aquesta anàlisi permetrà calcular el llindar d'emmascarament d'un so sobre amb més precisió que els mètodes utilitzats actualment. Aquest mètode s'utilitza per a imple­mentar una aplicació d'equalització perceptual que pretén millorar la per­cepció del senyal d'àudio en presència d'un soroll ambiental. Per això, aquesta tesi proposa dos algoritmes d'equalització diferents: 1) la pree­qualització del senyal d'àudio perquè es percebi per damunt del llindar d'emmascarament del soroll ambiental i 2) dissenyar un control de soroll ambiental perceptiu en els sistemes d'equalització activa de soroll (ANE) de manera que el nivell de soroll ambiental percebut estiga per davall del llindar d'emmascarament del senyal d'àudio. Per tant, l'última aportació d'aquesta tesi és la implementació d'una aplicació d'equalització perceptiva amb els dos algoritmes d'equalització embeguts i l'anàlisi del seu rendiment a través del banc de proves realitzat al laboratori GTAC-iTEAM.[EN] Audio systems have been extensively developed in recent years thanks to the increase of devices with high-performance processors able to per­form more efficient processing. In addition, wireless communications allow devices in a network to be located in different places without physical limitations. The combination of these technologies has led to the emergence of Acoustic Sensor Networks (ASN). An ASN is com­posed of nodes equipped with audio transducers, such as microphones or speakers. In the case of acoustic field monitoring, only acoustic sensors need to be incorporated into the ASN nodes. However, in the case of control applications, the nodes must interact with the acoustic field through loudspeakers. ASN can be implemented through low-cost devices, such as Rasp­berry Pi or mobile devices, capable of managing multiple mi­crophones and loudspeakers and offering good computational capacity. In addition, these devices can communicate through wireless connections, such as Wi-Fi or Bluetooth. Therefore, in this dissertation, an ASN composed of mobile devices connected to wireless speak­ers through a Bluetooth link is proposed. Additionally, the problem of syn­chronization between the devices in an ASN is one of the main challenges to be addressed since the audio processing performance is very sensitive to the lack of synchronism. Therefore, an analysis of the synchroniza­tion problem between devices connected to wireless speakers in an ASN is also carried out. In this regard, one of the main contributions is the analysis of the audio latency of mobile devices when the acoustic nodes in the ASN are comprised of mobile devices communicating with the corresponding loudspeakers through Bluetooth links. A second significant contribution of this dissertation is the implementation of a method to synchronize the different devices of an ASN, together with a study of its limitations. Finally, the proposed method has been introduced in order to implement personal sound zones (PSZ) applications. Therefore, the imple­mentation and analysis of the performance of different audio applications over an ASN composed of mobile devices and wireless speakers is also a significant contribution in the area of ASN. In cases where the acoustic environment negatively affects the percep­tion of the audio signal emitted by the ASN loudspeakers, equalization techniques are used with the objective of enhancing the perception thresh­old of the audio signal. For this purpose, a smart equalization system is implemented in this dissertation. In this regard, psychoacous­tic algorithms are employed to implement a smart processing based on the human hearing system capable of adapting to changes in the envi­ronment. Therefore, another important contribution of this thesis focuses on the analysis of the spectral masking between two complex sounds. This analysis will allow to calculate the masking threshold of one sound over the other in a more accurate way than the currently used methods. This method is used to implement a perceptual equalization application that aims to improve the perception threshold of the audio signal in presence of ambient noise. To this end, this thesis proposes two different equalization algorithms: 1) pre-equalizing the audio signal so that it is perceived above the ambient noise masking threshold and 2) designing a perceptual control of ambient noise in active noise equalization (ANE) systems, so that the perceived ambient noise level is below the masking threshold of the audio signal. Therefore, the last contribution of this dissertation is the imple­mentation of a perceptual equalization application with the two different embedded equalization algorithms and the analysis of their performance through the testbed carried out in the GTAC-iTEAM laboratory.This work has received financial support of the following projects: • SSPRESING: Smart Sound Processing for the Digital Living (Reference: TEC2015-67387-C4-1-R. Entity: Ministerio de Economia y Empresa. Spain). • FPI: Ayudas para contratos predoctorales para la formación de doctores (Reference: BES-2016-077899. Entity: Agencia Estatal de Investigación. Spain). DANCE: Dynamic Acoustic Networks for Changing Environments (Reference: RTI2018-098085-B-C41-AR. Entity: Agencia Estatal de Investigación. Spain). • DNOISE: Distributed Network of Active Noise Equalizers for Multi-User Sound Control (Reference: H2020-FETOPEN-4-2016-2017. Entity: I+D Colaborativa competitiva. Comisión de las comunidades europea).Estreder Campos, J. (2022). Smart Sound Control in Acoustic Sensor Networks: a Perceptual Perspective [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/181597TESI

    Low-complexity, low-area computer architectures for cryptographic application in resource constrained environments

    Get PDF
    RCE (Resource Constrained Environment) is known for its stringent hardware design requirements. With the rise of Internet of Things (IoT), low-complexity and low-area designs are becoming prominent in the face of complex security threats. Two low-complexity, low-area cryptographic processors based on the ultimate reduced instruction set computer (URISC) are created to provide security features for wireless visual sensor networks (WVSN) by using field-programmable gate array (FPGA) based visual processors typically used in RCEs. The first processor is the Two Instruction Set Computer (TISC) running the Skipjack cipher. To improve security, a Compact Instruction Set Architecture (CISA) processor running the full AES with modified S-Box was created. The modified S-Box achieved a gate count reduction of 23% with no functional compromise compared to Boyar’s. Using the Spartan-3L XC3S1500L-4-FG320 FPGA, the implementation of the TISC occupies 71 slices and 1 block RAM. The TISC achieved a throughput of 46.38 kbps at a stable 24MHz clock. The CISA which occupies 157 slices and 1 block RAM, achieved a throughput of 119.3 kbps at a stable 24MHz clock. The CISA processor is demonstrated in two main applications, the first in a multilevel, multi cipher architecture (MMA) with two modes of operation, (1) by selecting cipher programs (primitives) and sharing crypto-blocks, (2) by using simple authentication, key renewal schemes, and showing perceptual improvements over direct AES on images. The second application demonstrates the use of the CISA processor as part of a selective encryption architecture (SEA) in combination with the millions instructions per second set partitioning in hierarchical trees (MIPS SPIHT) visual processor. The SEA is implemented on a Celoxica RC203 Vertex XC2V3000 FPGA occupying 6251 slices and a visual sensor is used to capture real world images. Four images frames were captured from a camera sensor, compressed, selectively encrypted, and sent over to a PC environment for decryption. The final design emulates a working visual sensor, from on node processing and encryption to back-end data processing on a server computer

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    Low-complexity, low-area computer architectures for cryptographic application in resource constrained environments

    Get PDF
    RCE (Resource Constrained Environment) is known for its stringent hardware design requirements. With the rise of Internet of Things (IoT), low-complexity and low-area designs are becoming prominent in the face of complex security threats. Two low-complexity, low-area cryptographic processors based on the ultimate reduced instruction set computer (URISC) are created to provide security features for wireless visual sensor networks (WVSN) by using field-programmable gate array (FPGA) based visual processors typically used in RCEs. The first processor is the Two Instruction Set Computer (TISC) running the Skipjack cipher. To improve security, a Compact Instruction Set Architecture (CISA) processor running the full AES with modified S-Box was created. The modified S-Box achieved a gate count reduction of 23% with no functional compromise compared to Boyar’s. Using the Spartan-3L XC3S1500L-4-FG320 FPGA, the implementation of the TISC occupies 71 slices and 1 block RAM. The TISC achieved a throughput of 46.38 kbps at a stable 24MHz clock. The CISA which occupies 157 slices and 1 block RAM, achieved a throughput of 119.3 kbps at a stable 24MHz clock. The CISA processor is demonstrated in two main applications, the first in a multilevel, multi cipher architecture (MMA) with two modes of operation, (1) by selecting cipher programs (primitives) and sharing crypto-blocks, (2) by using simple authentication, key renewal schemes, and showing perceptual improvements over direct AES on images. The second application demonstrates the use of the CISA processor as part of a selective encryption architecture (SEA) in combination with the millions instructions per second set partitioning in hierarchical trees (MIPS SPIHT) visual processor. The SEA is implemented on a Celoxica RC203 Vertex XC2V3000 FPGA occupying 6251 slices and a visual sensor is used to capture real world images. Four images frames were captured from a camera sensor, compressed, selectively encrypted, and sent over to a PC environment for decryption. The final design emulates a working visual sensor, from on node processing and encryption to back-end data processing on a server computer

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    Solutions for large scale, efficient, and secure Internet of Things

    Get PDF
    The design of a general architecture for the Internet of Things (IoT) is a complex task, due to the heterogeneity of devices, communication technologies, and applications that are part of such systems. Therefore, there are significant opportunities to improve the state of the art, whether to better the performance of the system, or to solve actual issues in current systems. This thesis focuses, in particular, on three aspects of the IoT. First, issues of cyber-physical systems are analysed. In these systems, IoT technologies are widely used to monitor, control, and act on physical entities. One of the most important issue in these scenarios are related to the communication layer, which must be characterized by high reliability, low latency, and high energy efficiency. Some solutions for the channel access scheme of such systems are proposed, each tailored to different specific scenarios. These solutions, which exploit the capabilities of state of the art radio transceivers, prove effective in improving the performance of the considered systems. Positioning services for cyber-physical systems are also investigated, in order to improve the accuracy of such services. Next, the focus moves to network and service optimization for traffic intensive applications, such as video streaming. This type of traffic is common amongst non-constrained devices, like smartphones and augmented/virtual reality headsets, which form an integral part of the IoT ecosystem. The proposed solutions are able to increase the video Quality of Experience while wasting less bandwidth than state of the art strategies. Finally, the security of IoT systems is investigated. While often overlooked, this aspect is fundamental to enable the ubiquitous deployment of IoT. Therefore, security issues of commonly used IoT protocols are presented, together with a proposal for an authentication mechanism based on physical channel features. This authentication strategy proved to be effective as a standalone mechanism or as an additional security layer to improve the security level of legacy systems
    corecore