42,139 research outputs found

    Fault Discrimination in Wireless Sensor Networks

    Get PDF
    In current times, one of the promising and interesting areas of research is Wireless Sensor Networks. A Wireless Sensor Network consists of spatially distributed sensors to monitor environmental and physical conditions such as temperature, sound, pressure etc. It is built of nodes where each node is connected to one or more sensors. They are used for Medical applications, Security monitoring, Structural monitoring and Traffic monitoring etc. The number of sensor nodes in a Wireless Sensor Network can vary in the range of hundreds to thousands. In this project work we propose a distributed algorithm for detection of faults in a Wireless Sensor Network and to classify the faulty nodes. In our algorithm the sensor nodes are classified as being Fault Free, Transiently Faulty or Intermittently Faulty considering the energy differences from its neighbors in different rounds of the algorithm run. We have shown the simulation results in the form of the output messages from the nodes depicting their health and also compared the results in form of graphs for different average node degrees and different number of rounds of our algorithm run

    Object Tracking Using Wireless Sensor Network

    Get PDF
    Wireless sensor network consists of spatially distributed autonomous sensors to monitor physical or environmental conditions, where each sensors have the ability to collect, process and store information. These characteristics allow WSN (Wireless Sensor Network) to be used in wide range of application such as area monitoring, environmental sensing, battlefield surveillance, NBC (Nuclear Biological Chemical) attack detection and so on. In certain applications where the sensor field is large and the available budget cannot provide enough sensors to fully cover the entire sensor field. This provides the motivation to deploy minimum number of sensors by connecting which the entire sensor field can be fully covered. In this paper we propose an approximation algorithm for grid coverage and a technique namely regular energy efficient monitoring to make the sensors in the minimum size wireless sensor network energy efficient in order to increase the network life time while tracking the object in the network. Simulation shows that the proposed algorithm provides a good solution for grid coverage and energy consumption

    A Distributed Query Processing Engine

    Get PDF
    Wireless sensor networks (WSNs) are formed of tiny, highly energy-constrained sensor nodes that are equipped with wireless transceivers. They may be mobile and are usually deployed in large numbers in unfamiliar environments. The nodes communicate with one another by autonomously creating ad-hoc networks which are subsequently used to gather sensor data. WSNs also process the data within the network itself and only forward the result to the requesting node. This is referred to as in-network data aggregation and results in the substantial reduction of the amount of data that needs to be transmitted by any single node in the network. In this paper we present a framework for a distributed query processing engine (DQPE) which would allow sensor nodes to examine incoming queries and autonomously perform query optimisation using information available locally. Such qualities make a WSN the perfect tool to carryout environmental\ud monitoring in future planetary exploration missions in a reliable and cost effective manner

    Q-Coverage Maximum Connected Set Cover (QC-MCSC) Heuristic for Connected Target Problem in Wireless Sensor Network

    Get PDF
    Wireless Sensor Network is a wireless network consisting of spatially distributed autonomous devices using sensors to cooperatively monitor physical or environmental conditions. Wireless sensors networks (WSNs) can operate in harsh environments in which actual monitoring by human being are risky, inefficient and sometimes infeasible. This is the main advantages of WSN. In most of the cases, replenishment of batteries might be impossible. That2019;s why lifetime of WSN shows a very strong dependency on battery lifetime. So an important issue in sensor networks is power scarcity, which depends on battery size and weight limitations of WSN node. Energy-aware algorithms are designed for extending the lifetime of wireless sensor network. Different mechanisms can be used to optimize the energy of sensors and they have a great impact on prolonging the network lifetime. Energy minimization techniques can be used at routing, clustering and sensor scheduling etc

    QoS in wireless sensor networks: survey and approach

    Get PDF
    A wireless sensor network (WSN) is a computer wireless network composed of spatially distributed and autonomous tiny nodes -- smart dust sensors, motes -, which cooperatively monitor physical or environmental conditions. Nowadays these kinds of networks support a wide range of applications, such as target tracking, security, environmental control, habitat monitoring, source detection, source localization, vehicular and traffic monitoring, health monitoring, building and industrial monitoring, etc. Many of these applications have strong requirements for end-to-end delay and losses during data transmissions. In this work we have classified the main mechanisms that have been proposed to provide Quality of Service (QoS) in WSN at Medium Access Control (MAC) and network layers. Finally, taking into account some particularities of the studied MAC- and network-layer protocols, we have selected a real application scenario in order to show how to choose an appropriate approach for guaranteeing performance in a WSN deployed application

    Detection of Hidden Wormhole Attack in Wireless Sensor Networks using Neighborhood and Connectivity Information

    Get PDF
    Wireless sensor networks (WSNs) have inspired many applications such as military applications, environmental monitoring and other fields. WSN has emergence in various fields, so security is very important issue for sensor networks. Security comes from attacks. Due to the wireless and distributed nature anyone can connect with the network. Among all possible attacks, wormholes are very hard to detect because they can cause damage to the network without knowing the protocols used in the network. It is a powerful attack that can be conducted without requiring any cryptographic breaks. Wormholes are hard to detect because they use a private, out-of-band channel invisible to the underlying sensor network. In this paper we have proposed a wormhole detection protocol based on neighborhood and connectivity information. Performance analysis shows that our proposed approach can effectively detect wormhole attack with less storage cost. Keywords: Wireless sensor network, wormhole, out-of-band, security, neighborhood

    An eco-friendly hybrid urban computing network combining community-based wireless LAN access and wireless sensor networking

    Get PDF
    Computer-enhanced smart environments, distributed environmental monitoring, wireless communication, energy conservation and sustainable technologies, ubiquitous access to Internet-located data and services, user mobility and innovation as a tool for service differentiation are all significant contemporary research subjects and societal developments. This position paper presents the design of a hybrid municipal network infrastructure that, to a lesser or greater degree, incorporates aspects from each of these topics by integrating a community-based Wi-Fi access network with Wireless Sensor Network (WSN) functionality. The former component provides free wireless Internet connectivity by harvesting the Internet subscriptions of city inhabitants. To minimize session interruptions for mobile clients, this subsystem incorporates technology that achieves (near-)seamless handover between Wi-Fi access points. The WSN component on the other hand renders it feasible to sense physical properties and to realize the Internet of Things (IoT) paradigm. This in turn scaffolds the development of value-added end-user applications that are consumable through the community-powered access network. The WSN subsystem invests substantially in ecological considerations by means of a green distributed reasoning framework and sensor middleware that collaboratively aim to minimize the network's global energy consumption. Via the discussion of two illustrative applications that are currently being developed as part of a concrete smart city deployment, we offer a taste of the myriad of innovative digital services in an extensive spectrum of application domains that is unlocked by the proposed platform

    A Secure and Low-Energy Zone-based Wireless Sensor Networks Routing Protocol for Pollution Monitoring

    Full text link
    [EN] Sensor networks can be used in many sorts of environments. The increase of pollution and carbon footprint are nowadays an important environmental problem. The use of sensors and sensor networks can help to make an early detection in order to mitigate their effect over the medium. The deployment of wireless sensor networks (WSNs) requires high-energy efficiency and secures mechanisms to ensure the data veracity. Moreover, when WSNs are deployed in harsh environments, it is very difficult to recharge or replace the sensor's batteries. For this reason, the increase of network lifetime is highly desired. WSNs also work in unattended environments, which is vulnerable to different sort of attacks. Therefore, both energy efficiency and security must be considered in the development of routing protocols for WSNs. In this paper, we present a novel Secure and Low-energy Zone-based Routing Protocol (SeLeZoR) where the nodes of the WSN are split into zones and each zone is separated into clusters. Each cluster is controlled by a cluster head. Firstly, the information is securely sent to the zone-head using a secret key; then, the zone-head sends the data to the base station using the secure and energy efficient mechanism. This paper demonstrates that SeLeZoR achieves better energy efficiency and security levels than existing routing protocols for WSNs.Mehmood, A.; Lloret, J.; Sendra, S. (2016). A Secure and Low-Energy Zone-based Wireless Sensor Networks Routing Protocol for Pollution Monitoring. Wireless Communications and Mobile Computing. 16(17):2869-2883. https://doi.org/10.1002/wcm.2734S286928831617Sendra S Deployment of efficient wireless sensor nodes for monitoring in rural, indoor and underwater environments 2013Javaid, N., Qureshi, T. N., Khan, A. H., Iqbal, A., Akhtar, E., & Ishfaq, M. (2013). EDDEEC: Enhanced Developed Distributed Energy-efficient Clustering for Heterogeneous Wireless Sensor Networks. Procedia Computer Science, 19, 914-919. doi:10.1016/j.procs.2013.06.125Garcia, M., Sendra, S., Lloret, J., & Canovas, A. (2011). Saving energy and improving communications using cooperative group-based Wireless Sensor Networks. Telecommunication Systems, 52(4), 2489-2502. doi:10.1007/s11235-011-9568-3Garcia, M., Lloret, J., Sendra, S., & Rodrigues, J. J. P. C. (2011). Taking Cooperative Decisions in Group-Based Wireless Sensor Networks. Cooperative Design, Visualization, and Engineering, 61-65. doi:10.1007/978-3-642-23734-8_9Garcia, M., & Lloret, J. (2009). A Cooperative Group-Based Sensor Network for Environmental Monitoring. Cooperative Design, Visualization, and Engineering, 276-279. doi:10.1007/978-3-642-04265-2_41Jain T Wireless environmental monitoring system (wems) using data aggregation in a bidirectional hybrid protocol In Proc of the 6th International Conference ICISTM 2012 2012Senouci, M. R., Mellouk, A., Senouci, H., & Aissani, A. (2012). Performance evaluation of network lifetime spatial-temporal distribution for WSN routing protocols. Journal of Network and Computer Applications, 35(4), 1317-1328. doi:10.1016/j.jnca.2012.01.016Heinzelman WR Chandrakasan A Balakrishnan H Energy-efficient communication protocol for wireless microsensor networks In proc of the 33rd Annual Hawaii International Conference on System Sciences 2000 2000Xiangning F Yulin S Improvement on LEACH protocol of wireless sensor network In proc of the 2007 International Conference on Sensor Technologies and Applications SensorComm 2007 2007Tong M Tang M LEACH-B: an improved LEACH protocol for wireless sensor network In proc of the 6th International Conference on Wireless Communications Networking and Mobile Computing WiCOM 2010 2010Mohammad El-Basioni, B. M., Abd El-kader, S. M., Eissa, H. S., & Zahra, M. M. (2011). An Optimized Energy-aware Routing Protocol for Wireless Sensor Network. Egyptian Informatics Journal, 12(2), 61-72. doi:10.1016/j.eij.2011.03.001Younis O Fahmy S Distributed clustering in ad-hoc sensor networks: a hybrid, energy-efficient approach In proc of the Twenty-third Annual Joint Conference of the IEEE Computer and Communications Societies INFOCOM 2004 2004Noack, A., & Spitz, S. (2009). Dynamic Threshold Cryptosystem without Group Manager. Network Protocols and Algorithms, 1(1). doi:10.5296/npa.v1i1.161Nasser, N., & Chen, Y. (2007). SEEM: Secure and energy-efficient multipath routing protocol for wireless sensor networks. Computer Communications, 30(11-12), 2401-2412. doi:10.1016/j.comcom.2007.04.014Alippi, C., Camplani, R., Galperti, C., & Roveri, M. (2011). A Robust, Adaptive, Solar-Powered WSN Framework for Aquatic Environmental Monitoring. IEEE Sensors Journal, 11(1), 45-55. doi:10.1109/jsen.2010.2051539Parra L Sendra S Jimenez JM Lloret J Smart system to detect and track pollution in marine environments, in proc. of the 2015 2015 1503 1508Atto, M., & Guy, C. (2014). Routing Protocols and Quality of Services for Security Based Applications Using Wireless Video Sensor Networks. Network Protocols and Algorithms, 6(3), 119. doi:10.5296/npa.v6i3.5802Liu, Z., Zheng, Q., Xue, L., & Guan, X. (2012). A distributed energy-efficient clustering algorithm with improved coverage in wireless sensor networks. Future Generation Computer Systems, 28(5), 780-790. doi:10.1016/j.future.2011.04.019Bri D Sendra S Coll H Lloret J How the atmospheric variables affect to the WLAN datalink layer parameters 2010Ganesh, S., & Amutha, R. (2013). Efficient and secure routing protocol for wireless sensor networks through SNR based dynamic clustering mechanisms. Journal of Communications and Networks, 15(4), 422-429. doi:10.1109/jcn.2013.000073Amjad M 2014 Energy efficient multi level and distance clustering mechanism for wireless sensor networksMeghanathan, N. (2015). A Generic Algorithm to Determine Maximum Bottleneck Node Weight-based Data Gathering Trees for Wireless Sensor Networks. Network Protocols and Algorithms, 7(3), 18. doi:10.5296/npa.v7i3.796

    Landfill gas monitoring network - development of wireless sensor network platforms

    Get PDF
    A wireless sensor network has been developed for the application of landfill gas monitoring, specifically sensing methane, carbon dioxide and extraction pressure. This collaborative work with the Irish Environmental Protection Agency has been motivated by the need to reduce greenhouse gas emissions as well as aiming to improve landfill gas management and utilisation. This paper describes the preliminary findings of an ongoing trial deployment of multiple sensing platforms on an active landfill facility; data has been acquired for nine months to date. The platforms have operated successfully despite adverse on-site conditions, with validity demonstrated by reasonably strong correlation with independent on-site measurements. The increased temporal and spatial resolution provided by distributed sensor platforms is discussed with regard to improving landfill gas management practice
    corecore