261 research outputs found

    The Deployment in the Wireless Sensor Networks: Methodologies, Recent Works and Applications

    Get PDF
    International audienceThe wireless sensor networks (WSN) is a research area in continuous evolution with a variety of application contexts. Wireless sensor networks pose many optimization problems, particularly because sensors have limited capacity in terms of energy, processing and memory. The deployment of sensor nodes is a critical phase that significantly affects the functioning and performance of the network. Often, the sensors constituting the network cannot be accurately positioned, and are scattered erratically. To compensate the randomness character of their placement, a large number of sensors is typically deployed, which also helps to increase the fault tolerance of the network. In this paper, we are interested in studying the positioning and placement of sensor nodes in a WSN. First, we introduce the problem of deployment and then we present the latest research works about the different proposed methods to solve this problem. Finally, we mention some similar issues related to the deployment and some of its interesting applications

    Deployment Policies to Reliably Maintain and Maximize Expected Coverage in a Wireless Sensor Network

    Get PDF
    The long-term operation of a wireless sensor network (WSN) requires the deployment of new sensors over time to restore any loss in network coverage and communication ability resulting from sensor failures. Over the course of several deployment actions it is important to consider the cost of maintaining the WSN in addition to any desired performance measures such as coverage, connectivity, or reliability. The resulting problem formulation is approached first through a time-based deployment model in which the network is restored to a fixed size at periodic time intervals. The network destruction spectrum (D-spectrum) has been introduced to estimate reliability and is more commonly applied to a static network, rather than a dynamic network where new sensors are deployed over time. We discuss how the D-spectrum can be incorporated to estimate reliability of a time-based deployment policy and the features that allow a wide range of deployment policies to be evaluated in an efficient manner. We next focus on a myopic condition-based deployment model where the network is observed at periodic time intervals and a fixed budget is available to deploy new sensors with each observation. With a limited budget available the model must address the complexity present in a dynamic network size in addition to a dynamic network topology, and the dependence of network reliability on the deployment action. We discuss how the D-spectrum can be applied to the myopic condition-based deployment problem, illustrating the value of the D-spectrum in a variety of maintenance settings beyond the traditional static network reliability problem. From the insight of the time-based and myopic condition-based deployment models, we present a Markov decision process (MDP) model for the condition-based deployment problem that captures the benefit of an action beyond the current time period. Methodology related to approximate dynamic programming (ADP) and approximate value iteration algorithms is presented to search for high quality deployment policies. In addition to the time-based and myopic condition-based deployment models, the MDP model is one of the few addressing the repeated deployment of new sensors as well as an emphasis on network reliability. For each model we discuss the relevant problem formulation, methodology to estimate network reliability, and demonstrate the performance in a range of test instances, comparing to alternative policies or models as appropriate. We conclude with a stochastic optimization model focused on a slightly different objective to maximize expected coverage with uncertainty in where a sensor lands in the network. We discuss a heuristic solution method that seeks to determine an optimal deployment of sensors, present results for a wide range of network sizes and explore the impact of sensor failures on both the model formulation and resulting deployment policy

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    An algorithm for enhancing coverage and network lifetime in cluster-based Wireless Sensor Networks

    Get PDF
    Majority of wireless sensor networks (WSNs) clustering protocols in literature have focused on extending network lifetime and little attention has been paid to the coverage preservation as one of the QoS requirements along with network lifetime. In this paper, an algorithm is proposed to be integrated with clustering protocols to improve network lifetime as well as preserve network coverage in heterogeneous wireless sensor networks (HWSNs) where sensor nodes can have different sensing radii and energy attributes. The proposed algorithm works in proactive way to preserve network coverage and extend network lifetime by efficiently leveraging mobility to optimize the average coverage rate using only the nodes that are already deployed in the network. Simulations are conducted to validate the proposed algorithm by showing improvement in network lifetime and enhanced full coverage time with less energy consumptio

    A Review on Sensor Node Placement Techniques in Wireless Sensor Networks

    Get PDF
    One way to provide Wireless Sensor Network (WSN) with maximum coverage, maximum connectivity, minimum deployment cost and minimum energy consumption is through an effective planning mechanism in arranging an optimum number of sensor nodes. Proper planning will provide a cost-effective deployment by having optimal placements for the sensor nodes. Sensor node placement schemes are needed to accommodate the balance of coverage and energy consumption since closer sensor nodes not only reduces the energy consumption but will result in the network coverage becoming smaller. This paper critically reviews the research and development work done in sensor node placement. Based on the review, the design objectives that need to be considered are identified. Most of the work reviewed focused on two or three design objectives

    Covering Points of Interest with Mobile Sensors

    Get PDF
    International audienceThe coverage of Points of Interest (PoI) is a classical requirement in mobile wireless sensor applications. Optimizing the sensors self-deployment over a PoI while maintaining the connectivity between the sensors and the base station is thus a fundamental issue. This article addresses the problem of autonomous deployment of mobile sensors that need to cover a predefined PoI with a connectivity constraint. In our algorithm, each sensor moves toward a PoI but has also to maintain the connectivity with a subset of its neighboring sensors that are part of the Relative Neighborhood Graph (RNG). The Relative Neighborhood Graph reduction is chosen so that global connectivity can be provided locally. Our deployment scheme minimizes the number of sensors used for connectivity thus increasing the number of monitoring sensors. Analytical results, simulation results and practical implementation are provided to show the efficiency of our algorithm

    A survey of network lifetime maximization techniques in wireless sensor networks

    No full text
    Emerging technologies, such as the Internet of things, smart applications, smart grids and machine-to-machine networks stimulate the deployment of autonomous, selfconfiguring, large-scale wireless sensor networks (WSNs). Efficient energy utilization is crucially important in order to maintain a fully operational network for the longest period of time possible. Therefore, network lifetime (NL) maximization techniques have attracted a lot of research attention owing to their importance in terms of extending the flawless operation of battery-constrained WSNs. In this paper, we review the recent developments in WSNs, including their applications, design constraints and lifetime estimation models. Commencing with the portrayal of rich variety definitions of NL design objective used for WSNs, the family of NL maximization techniques is introduced and some design guidelines with examples are provided to show the potential improvements of the different design criteri

    Survey of Deployment Algorithms in Wireless Sensor Networks: Coverage and Connectivity Issues and Challenges

    Get PDF
    International audienceWireless Sensor Networks (WSNs) have many fields of application, including industrial, environmental, military, health and home domains. Monitoring a given zone is one of the main goals of this technology. This consists in deploying sensor nodes in order to detect any event occurring in the zone of interest considered and report this event to the sink. The monitoring task can vary depending on the application domain concerned. In the industrial domain, the fast and easy deployment of wireless sensor nodes allows a better monitoring of the area of interest in temporary worksites. This deployment must be able to cope with obstacles and be energy efficient in order to maximize the network lifetime. If the deployment is made after a disaster, it will operate in an unfriendly environment that is discovered dynamically. We present a survey that focuses on two major issues in WSNs: coverage and connectivity. We motivate our study by giving different use cases corresponding to different coverage, connectivity, latency and robustness requirements of the applications considered. We present a general and detailed analysis of deployment problems, while highlighting the impacting factors, the common assumptions and models adopted in the literature, as well as performance criteria for evaluation purposes. Different deployment algorithms for area, barrier, and points of interest are studied and classified according to their characteristics and properties. Several recapitulative tables illustrate and summarize our study. The designer in charge of setting up such a network will find some useful recommendations, as well as some pitfalls to avoid. Before concluding, we look at current trends and discuss some open issues
    • …
    corecore