98 research outputs found

    Innovative light sources for phototherapy

    Get PDF
    AbstractThe use of light for therapeutic purposes dates back to ancient Egypt, where the sun itself was an innovative source, probably used for the first time to heal skin diseases. Since then, technical innovation and advancement in medical sciences have produced newer and more sophisticated solutions for light-emitting sources and their applications in medicine. Starting from a brief historical introduction, the concept of innovation in light sources is discussed and analysed, first from a technical point of view and then in the light of their fitness to improve existing therapeutic protocols or propose new ones. If it is true that a "pure" technical advancement is a good reason for innovation, only a sub-system of those advancements is innovative for phototherapy. To illustrate this concept, the most representative examples of innovative light sources are presented and discussed, both from a technical point of view and from the perspective of their diffusion and applications in the clinical field

    Physically stimulated nanotheranostics for next generation cancer therapy: Focus on magnetic and light stimulations

    Full text link
    Physically or externally stimulated nanostructures often employ multimodality and show encouraging results at preclinical stage in cancer therapy. Specially designed smart nanostructures such as hybrid nanostructures are responsive to external physical stimuli such as light, magnetic field, electric, ultrasound, radio frequency, X-ray, etc. These physically responsive nanostructures have been widely explored as nonconventional innovative “nanotheranostics” in cancer therapies. Physically stimulated (particularly magnetic and light) nanotheranostics provide a unique combination of important properties to address key challenges in modern cancer therapy: (i) an active tumor targeting mechanism of therapeutic drugs driven by a physical force rather than passive antibody matching, (ii) an externally/remotely controlled drugs on-demand release mechanism, and (iii) a capability for advanced image guided tumor therapy and therapy monitoring. Although primarily addressed to the scientific community, this review offers valuable and accessible information for a wide range of readers interested in the current technological progress with direct relevance to the physics, chemistry, biomedical field, and theranostics. We herein cover magnetic and light-triggered modalities currently being developed for nonconventional cancer treatments. The physical basis of each modality is explained; so readers with a physics or, materials science background can easily grasp new developments in this field

    Photodynamic Therapy

    Get PDF
    This book is dedicated to a topic related to the effects of photodynamic therapy organized by Biomedicines in 2022 (https://www.mdpi.com/topics/photodynamic_therapy). In medicine, the use of photodynamic therapy for the treatment of oncological and non-oncological diseases has been widely documented and well codified. In dermatology, the use varies from oncological to the treatment of chronic wounds, as well as in cosmetology for photo-rejuvenation. The 19 manuscripts published in this book cover all aspects of this therapy, including the discovery of new natural and synthetic photosensitizers, biomaterials and nanotechnology, in vitro and in vivo studies, and clinical trials

    삽입형 의료 장치 및 광전자 소자를 위한 차세대 유연 물질의 설계와 제작

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 화학생물공학부 에너지환경화학융합기술전공, 2017. 2. 김대형.Soft electronics provide new opportunities on biomedical devices and optoelectronic devices since they offer flexible and conformable mechanical properties. Compared to commercialized rigid electronics, the soft electronics enables more accurate sensing from the curvilinear biological interface and tunable light incidence for optoelectronics. In this thesis, fabrication and application of soft medical devices and unconventional optoelectronic devices are developed based on the design and synthesis of bioresorbable and perovskite materials. Firstly, soft bioresorbable medical devices are designed and fabricated, which provide novel therapeutic guideline to overcome many challenges remaining for the treatment of glioblastoma. The integrated bioresorbable devices are composed of wireless heater, wireless temperature sensor and synthesized bioresorbable drug reservoir conformally adhered to the brain tissue provides localized, highly penetrative and controllable intracranial drug delivery. Based on the fabrication technique of bioresorbable materials, transient memory system is proposed and developed, which shows fast and complete chemical destruction of stored data by wide-range optical stimulation. The system can be established by the integration of transient ultrathin resistive random access memory (RRAM) with multi-dye-sensitized upconverting nanoparticles (UCNPs) and provides new opportunities in mobile and defense application. The final goal of this study is high-definition patterning of inorganic-organic hybrid perovskite thin films which have attracted great attention since it is regarded as an alternative to silicon in the optoelectronic devices. A new method so called Spin-on-patterning (SoP) enables the patterning of perovskite thin film which has hardly been accomplished due to their extreme instability in solvents like bioresorbable materials. The patterned perovskite photodiode is fabricated and has potential for future ultrathin image sensor array.Chapter 1. Introduction 1 1.1 Soft electronics 1 1.2 Soft bioresorbable electronics 7 1.3 Soft perovskite electronics 15 1.4 References 16 Chapter 2. Design, synthesis and fabrication of bioresorbable electronic patch for glioblastoma 24 2.1 Introduction 25 2.2 Result and Discussion 27 2.3 Conclusion 48 2.4 Experimental 49 2.5 References 58 Chapter 3. Integration of destructible resistive memory and multi-dye-sensitized upconverting nanoparticles for information security application 64 3.1 Introduction 64 3.2 Result and Discussion 67 3.3 Conclusion 99 3.4 Experimental 100 3.5 References 112 Chapter 4. High-resolution spin-on-patterning of perovskite thin films for optoelectronic device array 121 3.1 Introduction 121 3.2 Result and Discussion 124 3.3 Conclusion 144 3.4 Experimental 145 3.5 References 150 Bibliography 155 국문 초록 (Abstract in Korean) 157Docto

    Design and validation of an open-source modular Microplate Photoirradiation System for high-throughput photobiology experiments

    Get PDF
    Research in photobiology is currently limited by a lack of devices capable of delivering precise and tunable irradiation to cells in a high-throughput format. This limits researchers to using expensive commercially available or custom-built light sources which make it difficult to replicate, standardize, optimize, and scale experiments. Here we present an open-source Microplate Photoirradiation System (MPS) developed to enable high-throughput light experiments in standard 96 and 24-well microplates for a variety of applications in photobiology research. This open-source system features 96 independently controlled LEDs (4 LEDs per well in 24-well), Wi-Fi connected control and programmable graphical user interface (GUI) for control and programming, automated calibration GUI, and modular control and LED boards for maximum flexibility. A web-based GUI generates light program files containing irradiation parameters for groups of LEDs. These parameters are then uploaded wirelessly, stored and used on the MPS to run photoirradiation experiments inside any incubator. A rapid and semi-quantitative porphyrin metabolism assay was also developed to validate the system in wild-type fibroblasts. Protoporphyrin IX (PpIX) fluorescence accumulation was induced by incubation with 5-aminolevulinic acid (ALA), a photosensitization method leveraged clinically to destroy malignant cell types in a process termed photodynamic therapy (PDT), and cells were irradiated with 405nm light with varying irradiance, duration and pulsation parameters. Immediately after light treatment with the MPS, subsequent photobleaching was measured in live, adherent cells in both 96-well and a 24-well microplates using a microplate reader. Results demonstrate the utility and reliability of the Microplate Photoirradiation System to irradiate cells with precise irradiance and timing parameters in order to measure PpIx photobleaching kinetics in live adherent cells and perform comparable experiments with both 24 and 96 well microplate formats. The high-throughput capability of the MPS enabled measurement of enough irradiance conditions in a single microplate to fit PpIX fluorescence to a bioexponential decay model of photobleaching, as well as reveal a dependency of photobleaching on duty-cycle-but not frequency-in a pulsed irradiance regimen.We thank the Graduate School of Biological Sciences and the Black Family Stem Cell Institute at Icahn School of Medicine for providing financial support for the project. Chris Merck is affiliated with his own LLC (Merck Engineering LLC). Merck Engineering LLC did not contribute funding to the development of the MPS or its biological validation and has no pecuniary interest in this study. Chris Merck worked as a volunteer collaborator not representing any company or institution. Merck Engineering LLC did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific role of this author is articulated in the 'author contributions' section

    A concise review of nanomaterials for drug delivery and release

    Get PDF
    This review provides an updated vision about the recent developments in the field of drug vectorization using functional nanoparticles and other nanovectors. From a large number of these nanotechnology-based drug delivery systems that emerge nearly every week, only a tiny fraction reaches a pre-clinical or clinical phase study. In this report, we intend to provide contextual information about those nanocarriers and release methods that have shown the best outcomes at in vitro and in vivo experiments, highlighting those with proven therapeutic efficiency in humans. From silica-based porous nanoparticles to liposomes or polymeric nanoparticles, each one of these nanosystems has its advantages and drawbacks. We describe and discuss briefly those approaches that, in our criterion, have provided significant advancements over existing therapies at the in vivo level. This work also provides a general view of those commercially available nanovectors and their specific area of therapeutic action

    Targeted photoimmunotherapy for cancer

    Get PDF
    Photodynamic therapy (PDT) is a clinically approved procedure that can exert a curative action against malignant cells. The treatment implies the administration of a photoactive molecular species that, upon absorption of visible or near infrared light, sensitizes the formation of reactive oxygen species. These species are cytotoxic and lead to tumor cell death, damage vasculature, and induce inflammation. Clinical investigations demonstrated that PDT is curative and does not compromise other treatment options. One of the major limitations of the original method was the low selectivity of the photoactive compounds for malignant over healthy tissues. The development of conjugates with antibodies has endowed photosensitizing molecules with targeting capability, so that the compounds are delivered with unprecedented precision to the site of action. Given their fluorescence emission capability, these supramolecular species are intrinsically theranostic agents

    Targeted photoimmunotherapy for cancer

    Get PDF
    AbstractPhotodynamic therapy (PDT) is a clinically approved procedure that can exert a curative action against malignant cells. The treatment implies the administration of a photoactive molecular species that, upon absorption of visible or near infrared light, sensitizes the formation of reactive oxygen species. These species are cytotoxic and lead to tumor cell death, damage vasculature, and induce inflammation. Clinical investigations demonstrated that PDT is curative and does not compromise other treatment options. One of the major limitations of the original method was the low selectivity of the photoactive compounds for malignant over healthy tissues. The development of conjugates with antibodies has endowed photosensitizing molecules with targeting capability, so that the compounds are delivered with unprecedented precision to the site of action. Given their fluorescence emission capability, these supramolecular species are intrinsically theranostic agents

    Clinical Management and Evolving Novel Therapeutic Strategies for Patients with Brain Tumors

    Get PDF
    A dramatic increase in knowledge regarding the molecular biology of brain tumors has been established over the past few years, and this has lead to the development of novel therapeutic strategies for these patients. In this book a review of the options available for the clinical management of patients with these tumors are outlined. In addition advances in radiology both for pre-operative diagnostic purposes along with surgical planning are described. Furthermore a review of newer developments in chemotherapy along with the evolving field of photodynamic therapy both for intra-operative management and subsequent therapy is provided. A discussion of certain surgical management issues along with tumor induced epilepsy is included. Finally a discussion of the management of certain unique problems including brain metastases, brainstem glioma, central nervous system lymphoma along with issues involving patients with a brain tumor and pregnancy is provided
    corecore