27,036 research outputs found

    Wi-Fi Fingerprinting for Indoor Positioning

    Get PDF
    Wireless Fidelity (Wi-Fi) Fingerprinting is a remarkable approach developed by modern science to detect the user’s location efficiently. Today, the Global Positioning System (GPS) is used to keep track of our current location for outdoor positioning. In GPS technology, satellite signals cannot reach indoor environments as they are shielded from obstructions so that indoor environments with a lack of Line of Sight (LoS) do not provide enough satellite signal accuracy. Since indoor environments are very difficult to track, thus, a wide variety of techniques for dealing with them have been suggested. The best way to offer an indoor positioning service with the current technology is Wi-Fi since the most commercial infrastructure is well equipped with Wi-Fi routers. For indoor positioning systems (IPS), Wi-Fi fingerprinting approaches are being extremely popular. In this paper, all the approaches for Wi-Fi fingerprinting have been reviewed for indoor position localization. Related to Wi-Fi fingerprinting, most of the algorithms have been interpreted and the previous works of other researchers have been critically analyzed in this paper to get a clear view of the Wi-Fi fingerprinting process

    Wi-Fi Fingerprinting for Indoor Positioning

    Get PDF
    Wireless Fidelity (Wi-Fi) Fingerprinting is a remarkable approach developed by modern science to detect the user’s location efficiently. Today, the Global Positioning System (GPS) is used to keep track of our current location for outdoor positioning. In GPS technology, satellite signals cannot reach indoor environments as they are shielded from obstructions so that indoor environments with a lack of Line of Sight (LoS) do not provide enough satellite signal accuracy. Since indoor environments are very difficult to track, thus, a wide variety of techniques for dealing with them have been suggested. The best way to offer an indoor positioning service with the current technology is Wi-Fi since the most commercial infrastructure is well equipped with Wi-Fi routers. For indoor positioning systems (IPS), Wi-Fi fingerprinting approaches are being extremely popular. In this paper, all the approaches for Wi-Fi fingerprinting have been reviewed for indoor position localization. Related to Wi-Fi fingerprinting, most of the algorithms have been interpreted and the previous works of other researchers have been critically analyzed in this paper to get a clear view of the Wi-Fi fingerprinting process

    Performance of a time-of-arrival technique for positioning WLAN terminals

    Get PDF
    Nowadays, several systems are available for outdoor location (i.e GPS, cellular networks based…). However, there is no proper location system for indoor scenarios. The technique presented in this paper proposes the use of the existing wireless LAN infrastructure with minor changes to provide an accurate estimation of the location of mobile devices in indoor environments. This technique is based on round-trip time (RTT) measurements, which are used to estimate TOA and distances between the device to be located and WLAN access points. To avoid the cumbersome modification of the physical layer, each RTT is estimated between the transmission of an IEEE 802.11 link layer data frame and the reception of the associated acknowledgement (ACK). By applying trilateration algorithms, an accurate estimation of the mobile position is calculated.Peer ReviewedPostprint (published version

    An Indoor Navigation System Using a Sensor Fusion Scheme on Android Platform

    Get PDF
    With the development of wireless communication networks, smart phones have become a necessity for people’s daily lives, and they meet not only the needs of basic functions for users such as sending a message or making a phone call, but also the users’ demands for entertainment, surfing the Internet and socializing. Navigation functions have been commonly utilized, however the navigation function is often based on GPS (Global Positioning System) in outdoor environments, whereas a number of applications need to navigate indoors. This paper presents a system to achieve high accurate indoor navigation based on Android platform. To do this, we design a sensor fusion scheme for our system. We divide the system into three main modules: distance measurement module, orientation detection module and position update module. We use an efficient way to estimate the stride length and use step sensor to count steps in distance measurement module. For orientation detection module, in order to get the optimal result of orientation, we then introduce Kalman filter to de-noise the data collected from different sensors. In the last module, we combine the data from the previous modules and calculate the current location. Results of experiments show that our system works well and has high accuracy in indoor situations

    Indoor Localization for Fire Safety : A brief overview of fundamentals, needs and requirements and applications

    Get PDF
    An indoor localization system for positioning evacuating people can be anticipated to increase the chances of a safe evacuation and effective rescue intervention in case of a tunnel fire. Such a system may utilize prevalent wireless technologies, e.g., Bluetooth, RFID and Wi-Fi, which today are used to survey incoming and outgoing traffic to a certain space or location, to estimate group sizes and to measure the duration of visits during normal operation of buildings. Examples also exist of where the same wireless technologies are used for safety purposes, for example to assess real-time location, tracking and monitoring of vehicles, personnel and equipment in mining environments. However, they are relatively few, and typically rely on a high degree of control over the people that are to be tracked, and their association with (connection to) the localization system used for the tracking. In this report, the results of a brief overview of the literature within the field of indoor localization in general, and the application of indoor localization systems within the field of particularly fire safety, is summarized. This information forms the underlying basis for the planning and execution of a future field study, in which an indoor Wi-Fi localization system will be tested and evaluated in terms of if, and if so how, it can be used to position evacuating people in tunnels. Whereas such a system allows digital footprints to be collected within a wireless network infrastructure (also already existing ones), questions remains to be answered regarding aspects such as precision and accuracy, and furthermore, how these aspects are affected by other independent variables. In the end of this report, examples of research questions deemed necessary to answer in order to enable a sound evaluation of the system is presented. These need to be addressed in the future planning of the above-mentioned field study

    RF Localization in Indoor Environment

    Get PDF
    In this paper indoor localization system based on the RF power measurements of the Received Signal Strength (RSS) in WLAN environment is presented. Today, the most viable solution for localization is the RSS fingerprinting based approach, where in order to establish a relationship between RSS values and location, different machine learning approaches are used. The advantage of this approach based on WLAN technology is that it does not need new infrastructure (it reuses already and widely deployed equipment), and the RSS measurement is part of the normal operating mode of wireless equipment. We derive the Cramer-Rao Lower Bound (CRLB) of localization accuracy for RSS measurements. In analysis of the bound we give insight in localization performance and deployment issues of a localization system, which could help designing an efficient localization system. To compare different machine learning approaches we developed a localization system based on an artificial neural network, k-nearest neighbors, probabilistic method based on the Gaussian kernel and the histogram method. We tested the developed system in real world WLAN indoor environment, where realistic RSS measurements were collected. Experimental comparison of the results has been investigated and average location estimation error of around 2 meters was obtained
    corecore