338 research outputs found

    Embedded Electronic Systems for Electronic Skin Applications

    Get PDF
    The advances in sensor devices are potentially providing new solutions to many applications including prosthetics and robotics. Endowing upper limb prosthesis with tactile sensors (electronic/sensitive skin) can be used to provide tactile sensory feedback to the amputees. In this regard, the prosthetic device is meant to be equipped with tactile sensing system allowing the user limb to receive tactile feedback about objects and contact surfaces. Thus, embedding tactile sensing system is required for wearable sensors that should cover wide areas of the prosthetics. However, embedding sensing system involves set of challenges in terms of power consumption, data processing, real-time response and design scalability (e-skin may include large number of tactile sensors). The tactile sensing system is constituted of: (i) a tactile sensor array, (ii) an interface electronic circuit, (iii) an embedded processing unit, and (iv) a communication interface to transmit tactile data. The objective of the thesis is to develop an efficient embedded tactile sensing system targeting e-skin application (e.g. prosthetic) by: 1) developing a low power and miniaturized interface electronics circuit, operating in real-time; 2) proposing an efficient algorithm for embedded tactile data processing, affecting the system time latency and power consumption; 3) implementing an efficient communication channel/interface, suitable for large amount of data generated from large number of sensors. Most of the interface electronics for tactile sensing system proposed in the literature are composed of signal conditioning and commercial data acquisition devices (i.e. DAQ). However, these devices are bulky (PC-based) and thus not suitable for portable prosthetics from the size, power consumption and scalability point of view. Regarding the tactile data processing, some works have exploited machine learning methods for extracting meaningful information from tactile data. However, embedding these algorithms poses some challenges because of 1) the high amount of data to be processed significantly affecting the real time functionality, and 2) the complex processing tasks imposing burden in terms of power consumption. On the other hand, the literature shows lack in studies addressing data transfer in tactile sensing system. Thus, dealing with large number of sensors will pose challenges on the communication bandwidth and reliability. Therefore, this thesis exploits three approaches: 1) Developing a low power and miniaturized Interface Electronics (IE), capable of interfacing and acquiring signals from large number of tactile sensors in real-time. We developed a portable IE system based on a low power arm microcontroller and a DDC232 A/D converter, that handles an array of 32 tactile sensors. Upon touch applied to the sensors, the IE acquires and pre-process the sensor signals at low power consumption achieving a battery lifetime of about 22 hours. Then we assessed the functionality of the IE by carrying out Electrical and electromechanical characterization experiments to monitor the response of the interface electronics with PVDF-based piezoelectric sensors. The results of electrical and electromechanical tests validate the correct functionality of the proposed system. In addition, we implemented filtering methods on the IE that reduced the effect of noise in the system. Furthermore, we evaluated our proposed IE by integrating it in tactile sensory feedback system, showing effective deliver of tactile data to the user. The proposed system overcomes similar state of art solutions dealing with higher number of input channels and maintaining real time functionality. 2) Optimizing and implementing a tensorial-based machine learning algorithm for touch modality classification on embedded Zynq System-on-chip (SoC). The algorithm is based on Support Vector Machine classifier to discriminate between three input touch modality classes \u201cbrushing\u201d, \u201crolling\u201d and \u201csliding\u201d. We introduced an efficient algorithm minimizing the hardware implementation complexity in terms of number of operations and memory storage which directly affect time latency and power consumption. With respect to the original algorithm, the proposed approach \u2013 implemented on Zynq SoC \u2013 achieved reduction in the number of operations per inference from 545 M-ops to 18 M-ops and the memory storage from 52.2 KB to 1.7 KB. Moreover, the proposed method speeds up the inference time by a factor of 43 7 at a cost of only 2% loss in accuracy, enabling the algorithm to run on embedded processing unit and to extract tactile information in real-time. 3) Implementing a robust and efficient data transfer channel to transfer aggregated data at high transmission data rate and low power consumption. In this approach, we proposed and demonstrated a tactile sensory feedback system based on an optical communication link for prosthetic applications. The optical link features a low power and wide transmission bandwidth, which makes the feedback system suitable for large number of tactile sensors. The low power transmission is due to the employed UWB-based optical modulation. We implemented a system prototype, consisting of digital transmitter and receiver boards and acquisition circuits to interface 32 piezoelectric sensors. Then we evaluated the system performance by measuring, processing and transmitting data of the 32 piezoelectric sensors at 100 Mbps data rate through the optical link, at 50 pJ/bit communication energy consumption. Experimental results have validated the functionality and demonstrated the real time operation of the proposed sensory feedback system

    HapBead: on-skin microfluidic haptic interface using tunable bead

    Get PDF
    On-skin haptic interfaces using soft elastomers which are thin and flexible have significantly improved in recent years. Many are focused on vibrotactile feedback that requires complicated parameter tuning. Another approach is based on mechanical forces created via piezoelectric devices and other methods for non-vibratory haptic sensations like stretching, twisting. These are often bulky with electronic components and associated drivers are complicated with limited control of timing and precision. This paper proposes HapBead, a new on-skin haptic interface that is capable of rendering vibration like tactile feedback using microfluidics. HapBead leverages a microfluidic channel to precisely and agilely oscillate a small bead via liquid flow, which then generates various motion patterns in channel that creates highly tunable haptic sensations on skin. We developed a proof-of-concept design to implement thin, flexible and easily affordable HapBead platform, and verified its haptic rendering capabilities via attaching it to users’ fingertips. A study was carried out and confirmed that participants could accurately tell six different haptic patterns rendered by HapBead. HapBead enables new wearable display applications with multiple integrated functionalities such as on-skin haptic doodles, mixed reality haptics and visual-haptic displays

    one6G white paper, 6G technology overview:Second Edition, November 2022

    Get PDF
    6G is supposed to address the demands for consumption of mobile networking services in 2030 and beyond. These are characterized by a variety of diverse, often conflicting requirements, from technical ones such as extremely high data rates, unprecedented scale of communicating devices, high coverage, low communicating latency, flexibility of extension, etc., to non-technical ones such as enabling sustainable growth of the society as a whole, e.g., through energy efficiency of deployed networks. On the one hand, 6G is expected to fulfil all these individual requirements, extending thus the limits set by the previous generations of mobile networks (e.g., ten times lower latencies, or hundred times higher data rates than in 5G). On the other hand, 6G should also enable use cases characterized by combinations of these requirements never seen before, e.g., both extremely high data rates and extremely low communication latency). In this white paper, we give an overview of the key enabling technologies that constitute the pillars for the evolution towards 6G. They include: terahertz frequencies (Section 1), 6G radio access (Section 2), next generation MIMO (Section 3), integrated sensing and communication (Section 4), distributed and federated artificial intelligence (Section 5), intelligent user plane (Section 6) and flexible programmable infrastructures (Section 7). For each enabling technology, we first give the background on how and why the technology is relevant to 6G, backed up by a number of relevant use cases. After that, we describe the technology in detail, outline the key problems and difficulties, and give a comprehensive overview of the state of the art in that technology. 6G is, however, not limited to these seven technologies. They merely present our current understanding of the technological environment in which 6G is being born. Future versions of this white paper may include other relevant technologies too, as well as discuss how these technologies can be glued together in a coherent system

    Low Latency Protocols Investigation for Event-Driven Wireless Body Area Networks

    Get PDF
    Nowadays distributed electronic health and fitness monitoring are hot-topics in bio-engineering, however common solutions for Wireless Body Area Networks (WBANs) featuring high-density sampled data transmission still stumbles over the trade-off among data rate, application throughput, and latency. Therefore, the Bluetooth Low Energy (BLE) and the IEEE 802.15.4 protocols are here investigated, with the aim of developing an event-driven WBAN to support a threshold-crossing surface ElectroMyoGraphy (sEMG) acquisition approach. We then implemented a custom protocol to overcome their limitations and fulfil all the requirements, resulting in a transmission latency of 0.856 ms ± 1 µs and enabling a functional operating time up to 110 h

    Exploring Hand-Based Haptic Interfaces for Mobile Interaction Design

    Get PDF
    Visual attention is crucial in mobile environments, not only for staying aware of dynamic situations, but also for safety reasons. However, current mobile interaction design forces the user to focus on the visual interface of the handheld device, thus limiting the user's ability to process visual information from their environment. In response to these issues, a common solution is to encode information with on-device vibrotactile feedback. However, the vibration is transitory and is often difficult to perceive when mobile. Another approach is to make visual interfaces even more dominant with smart glasses, which enable head-up interaction on their see-through interface. Yet, their input methods raise many concerns regarding social acceptability, preventing them from being widely adopted. There is a need to derive feasible interaction techniques for mobile use while maintaining the user's situational awareness, and this thesis argues that solutions could be derived through the exploration of hand-based haptic interfaces. The objective of this research is to provide multimodal interaction for users to better interact with information while maintaining proper attention to the environment in mobile scenarios. Three research areas were identified. The first is developing expressive haptic stimuli, in which the research investigates how static haptic stimuli could be derived. The second is designing mobile spatial interaction with the user's surroundings as content, which manifests situations in which visual attention to the environment is most needed. The last is interacting with the always-on visual interface on smart glasses, the seemingly ideal solution for mobile applications. The three areas extend along the axis of the demand of visual attention on the interface, from non-visual to always-on visual interfaces. Interactive prototypes were constructed and deployed in studies for each research area, including two shape-changing mechanisms feasible for augmenting mobile devices and a spatial-sensing haptic glove featuring mid-air hand-gestural interaction with haptic support. The findings across the three research areas highlight the immediate benefits of incorporating hand-based haptic interfaces into applications. First, shape-changing interfaces can provide static and continuous haptic stimuli for mobile communication. Secondly, enabling direct interaction with real-world landmarks through a haptic glove and leaving visual attention on the surroundings could result in a higher level of immersed experience. Lastly, the users of smart glasses can benefit from the unobtrusive hand-gestural interaction enabled by the isolated tracking technique of a haptic glove. Overall, this work calls for mobile interaction design to consider haptic stimuli beyond on-device vibration, and mobile hardware solutions beyond the handheld form factor. It also invites designers to consider how to confront the competition of cognitive resources among multiple tasks from an interaction design perspective.Visuaalisen huomiokyvyn säilyttäminen mobiililaitteita käytettäessä on tärkeää sekä ympäröivien tilanteiden havainnoimisen että käyttäjän turvallisuuden kannalta. Nykyiset mobiilikäyttöliittymäratkaisut kuitenkin vaativat käyttäjää keskittämään huomionsa mobiililaitteen ruudulle, mikä rajoittaa käyttäjän kykyä käsitellä ympäristöön liittyvää visuaalista informaatiota. Eräs paljon käytetty ratkaisu tähän ongelmaan on esittää informaatiota laitteen värinän avulla. Värinäpohjainen esitystapa on kuitenkin hetkeen sidottu ja siten ohimenevä, eikä sitä ole välttämättä helppo havaita käyttäjän liikkeellä ollessa. Toinen tapa hyödyntää ns. älylaseja visuaalisen informaation esittämiseen. Tämän tavan etuna on läpinäkyvä näyttöpinta, joka ei vaadi keskittämään katsetta erilliseen laitteeseen. Älylasien tyypilliset syötemuodot kuitenkin aiheuttavat ongelmia niiden sosiaaliselle hyväksyttävyydelle, mikä estää niiden laajempaa käyttöönottoa. Niinpä tämän tutkimuksen lähtökohtana on tarve uudenlaisten mobiilikäyttöliittymien suunnittelulle siten, että käyttäjän huomio säilyy ympäristössä. Väitöskirjatutkimuksessa esitetään, että ratkaisu voi pohjautua käsin kosketeltavaan haptiseen rajapintaan. Tutkimuksen tavoitteena on tuottaa mobiilitilanteisiin multimodaalisia käyttöliittymiä, joiden avulla käyttäjä voi vuorovaikuttaa informaation kanssa menettämättä huomiotaan ympäristöstä. Tutkimus keskittyy kolmeen tutkimuskohteeseen. Ensimmäisessä kehitetään ilmaisuvoimaisia haptisia ärsykkeitä tarkastelemalla staattisten haptisten ärsykkeiden suunnittelun mahdollisuuksia. Toinen kohde liittyy tilaan perustuvan vuorovaikutuksen suunnitteluun tilanteessa, jossa käyttäjä vuorovaikuttaa ympäristöön liittyvän informaation kanssa liikkeellä ollessaan, jolloin ympäristön visuaalinen havainnointi on tärkeää. Kolmannessa tutkimuskohteessa kehitetään uudenlainen syötemuoto älylaseille. Nämä kolme tutkimuskohdetta voidaan esittää osina jatkumoa, joka perustuu laitteen vaatiman visuaalisen huomion määrään täysin ei-visuaalisista täysin visuaalisiin käyttöliittymiin. Jokaisen tutkimuskohteen osalta kehitettiin vuorovaikutteisia prototyyppejä: kaksi muotoa muuttavaa mekanismia mobiililaitteiden täydentämiseksi uusilla palautemuodoilla sekä haptinen hansikas, joka mahdollistaa vuorovaikutuksen ilmassa suoritettavien eleiden ja haptisen palautteen avulla. Kaikkien kolmen tutkimuskohteen tulokset korostavat käsin kosketeltavien haptisten rajapintojen etuja käytännön sovelluksissa. Ensinnäkin muotoa muuttavat rajapinnat voivat tuottaa staattisia ja jatkuvia ärsykkeitä, joita voidaan hyödyntää mobiilivuorovaikutuksessa. Toiseksi haptisen hansikkaan mahdollistama suora vuorovaikutus ympäröivien maamerkkien kanssa auttaa säilyttämään visuaalisen huomion ympäristössä ja voi saada aikaan mukaansatempaavamman käyttökokemuksen. Kolmanneksi älylasien käyttäjät hyötyvät haptisen hansikkaan anturien mahdollistamasta huomaamattomasta elevuorovaikutuksesta. Tämä väitöskirja kehottaa mobiilikäyttöliittymien suunnittelijoita ottamaan huomioon muut kuin kädessä pideltävät laitemuodot sekä haptisten ärsykkeiden mahdollisuudet laajemmin kuin laitteen sisäänrakennetun värinäominaisuuden kautta. Väitöstutkimus myös pyytää suunnittelijoita ja muotoilijoita pohtimaan vuorovaikutussuunnittelun näkökulmasta, miten kohdata monisuorittamistilanteissa käyttäjän kognitiivisten resurssien välinen kilpailu

    Advances in Intelligent Robotics and Collaborative Automation

    Get PDF
    This book provides an overview of a series of advanced research lines in robotics as well as of design and development methodologies for intelligent robots and their intelligent components. It represents a selection of extended versions of the best papers presented at the Seventh IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications IDAACS 2013 that were related to these topics. Its contents integrate state of the art computational intelligence based techniques for automatic robot control to novel distributed sensing and data integration methodologies that can be applied to intelligent robotics and automation systems. The objective of the text was to provide an overview of some of the problems in the field of robotic systems and intelligent automation and the approaches and techniques that relevant research groups within this area are employing to try to solve them.The contributions of the different authors have been grouped into four main sections:• Robots• Control and Intelligence• Sensing• Collaborative automationThe chapters have been structured to provide an easy to follow introduction to the topics that are addressed, including the most relevant references, so that anyone interested in this field can get started in the area

    3D locomotion biomimetic robot fish with haptic feedback

    Full text link
    This thesis developed a biomimetic robot fish and built a novel haptic robot fish system based on the kinematic modelling and three-dimentional computational fluid dynamic (CFD) hydrodynamic analysis. The most important contribution is the successful CFD simulation of the robot fish, supporting users in understanding the hydrodynamic properties around it

    Human-Machine Interfaces using Distributed Sensing and Stimulation Systems

    Get PDF
    As the technology moves towards more natural human-machine interfaces (e.g. bionic limbs, teleoperation, virtual reality), it is necessary to develop a sensory feedback system in order to foster embodiment and achieve better immersion in the control system. Contemporary feedback interfaces presented in research use few sensors and stimulation units to feedback at most two discrete feedback variables (e.g. grasping force and aperture), whereas the human sense of touch relies on a distributed network of mechanoreceptors providing a wide bandwidth of information. To provide this type of feedback, it is necessary to develop a distributed sensing system that could extract a wide range of information during the interaction between the robot and the environment. In addition, a distributed feedback interface is needed to deliver such information to the user. This thesis proposes the development of a distributed sensing system (e-skin) to acquire tactile sensation, a first integration of distributed sensing system on a robotic hand, the development of a sensory feedback system that compromises the distributed sensing system and a distributed stimulation system, and finally the implementation of deep learning methods for the classification of tactile data. It\u2019s core focus addresses the development and testing of a sensory feedback system, based on the latest distributed sensing and stimulation techniques. To this end, the thesis is comprised of two introductory chapters that describe the state of art in the field, the objectives, and the used methodology and contributions; as well as six studies that tackled the development of human-machine interfaces

    Advances in Intelligent Robotics and Collaborative Automation

    Get PDF
    This book provides an overview of a series of advanced research lines in robotics as well as of design and development methodologies for intelligent robots and their intelligent components. It represents a selection of extended versions of the best papers presented at the Seventh IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications IDAACS 2013 that were related to these topics. Its contents integrate state of the art computational intelligence based techniques for automatic robot control to novel distributed sensing and data integration methodologies that can be applied to intelligent robotics and automation systems. The objective of the text was to provide an overview of some of the problems in the field of robotic systems and intelligent automation and the approaches and techniques that relevant research groups within this area are employing to try to solve them.The contributions of the different authors have been grouped into four main sections:• Robots• Control and Intelligence• Sensing• Collaborative automationThe chapters have been structured to provide an easy to follow introduction to the topics that are addressed, including the most relevant references, so that anyone interested in this field can get started in the area
    corecore