882 research outputs found

    Wireless Mesh Networks for Infrastructure Deficient Areas

    Full text link
    International audienceProvision of internet access in infrastructure deficient areas is expected to bring profound economic and humanitarian benefit to developing countries. Notwithstanding, achieving this goal poses an economic and technical challenge. Due to technological and economical reasons cellular networks are regarded to be unable to deliver affordable distribution in the short term. Instead 802.11s wireless mesh networking standard is identified to be a more viable and affordable partial solution to deliver broadband internet in the periphery of developing countries. A general focus is the individual incentive to participate in a mesh network rather than reliance on organisational bodies. This paper designs an architecture and business model for a low cost, low range distribution of internet access. The technical architecture is evaluated using simulation and is found to be viable, but demands optimisation

    Evaluation of temperature-performance trade-offs in wireless network-on-chip architectures

    Get PDF
    Continued scaling of device geometries according to Moore\u27s Law is enabling complete end-user systems on a single chip. Massive multicore processors are enablers for many information and communication technology (ICT) innovations spanning various domains, including healthcare, defense, and entertainment. In the design of high-performance massive multicore chips, power and heat are dominant constraints. Temperature hotspots witnessed in multicore systems exacerbate the problem of reliability in deep submicron technologies. Hence, there is a great need to explore holistic power and thermal optimization and management strategies for the massive multicore chips. High power consumption not only raises chip temperature and cooling cost, but also decreases chip reliability and performance. Thus, addressing thermal concerns at different stages of the design and operation is critical to the success of future generation systems. The performance of a multicore chip is also influenced by its overall communication infrastructure, which is predominantly a Network-on-Chip (NoC). The existing method of implementing a NoC with planar metal interconnects is deficient due to high latency, significant power consumption, and temperature hotspots arising out of long, multi-hop wireline links used in data exchange. On-chip wireless networks are envisioned as an enabling technology to design low power and high bandwidth massive multicore architectures. However, optimizing wireless NoCs for best performance does not necessarily guarantee a thermally optimal interconnection architecture. The wireless links being highly efficient attract very high traffic densities which in turn results in temperature hotspots. Therefore, while the wireless links result in better performance and energy-efficiency, they can also cause temperature hotspots and undermine the reliability of the system. Consequently, the location and utilization of the wireless links is an important factor in thermal optimization of high performance wireless Networks-on-Chip. Architectural innovation in conjunction with suitable power and thermal management strategies is the key for designing high performance yet energy-efficient massive multicore chips. This work contributes to exploration of various the design methodologies for establishing wireless NoC architectures that achieve the best trade-offs between temperature, performance and energy-efficiency. It further demonstrates that incorporating Dynamic Thermal Management (DTM) on a multicore chip designed with such temperature and performance optimized Wireless Network-on-Chip architectures improves thermal profile while simultaneously providing lower latency and reduced network energy dissipation compared to its conventional counterparts

    Multiple metrics-OLSR in NAN for Advanced Metering Infrastructures

    Get PDF
    Routing in Neighbourhood Area Network (NAN) for Smart Grid's Advanced Metering Infrastructure (AMI) raises the need for Quality of Service (QoS)-Aware routing. This is due to the expanded list of applications that will result in the transmission of different types of traffic between NAN devices (i.e smart meters). In wireless mesh network (WMN) routing, a combination of multiple link metrics, though complex, has been identified as a possible solution for QoS routing. These complexities (i.e Np complete problem) can be resolved through the use of Analytical Hierarchy Process (AHP) algorithm and pruning techniques. With the assumption that smart meters transmit IP packets of different sizes at different interval to represent AMI traffic, a case study of the performance of three Optimised Link State Routing (OLSR) link metrics is carried out on a grid topology NAN based WMN in ns-2 network simulator. The best two performing metric were used to show the possibility of combining multiple metrics with OLSR through the AHP algorithm to fulfill the QoS routing requirements of targeted AMI application traffic in NANs

    Application of Wireless Nano Sensors Network and Nanotechnology in Precision Agriculture: Review

    Get PDF
    Due to a series of global issues in recent years, such as the food crisis, the impact of fertilizer on climate change, and improper use of irrigation that’s way precision agriculture is the best solution for alleviating this problem. One of the most important and interesting information technology is the wireless Nanosensor network with the help of Nanotechnology will boost crop productivity, maintain the fertility status of the soil, save the water with precise application of irrigation in the field and minimize the loss of excess fertilizer through the precise application. In this paper, we have surveyed the importance of sensor networks in precision agriculture and the importance of Nanosensors with the help of Nanotechnology for remote monitoring in the various application of the agriculture field. View Article DOI: 10.47856/ijaast.2022.v09i04.00

    An Empirical Air-to-Ground Channel Model Based on Passive Measurements in LTE

    Get PDF
    In this paper, a recently conducted measurement campaign for unmanned-aerial-vehicle (UAV) channels is introduced. The downlink signals of an in-service long-time-evolution (LTE) network which is deployed in a suburban scenario were acquired. Five horizontal and five vertical flight routes were considered. The channel impulse responses (CIRs) are extracted from the received data by exploiting the cell specific signals (CRSs). Based on the CIRs, the parameters of multipath components (MPCs) are estimated by using a high-resolution algorithm derived according to the space-alternating generalized expectation-maximization (SAGE) principle. Based on the SAGE results, channel characteristics including the path loss, shadow fading, fast fading, delay spread and Doppler frequency spread are thoroughly investigated for different heights and horizontal distances, which constitute a stochastic model.Comment: 15 pages, submitted version to IEEE Transactions on Vehicular Technology. Current status: Early acces
    • …
    corecore