3,550 research outputs found

    A Trust Management Framework for Vehicular Ad Hoc Networks

    Get PDF
    The inception of Vehicular Ad Hoc Networks (VANETs) provides an opportunity for road users and public infrastructure to share information that improves the operation of roads and the driver experience. However, such systems can be vulnerable to malicious external entities and legitimate users. Trust management is used to address attacks from legitimate users in accordance with a user’s trust score. Trust models evaluate messages to assign rewards or punishments. This can be used to influence a driver’s future behaviour or, in extremis, block the driver. With receiver-side schemes, various methods are used to evaluate trust including, reputation computation, neighbour recommendations, and storing historical information. However, they incur overhead and add a delay when deciding whether to accept or reject messages. In this thesis, we propose a novel Tamper-Proof Device (TPD) based trust framework for managing trust of multiple drivers at the sender side vehicle that updates trust, stores, and protects information from malicious tampering. The TPD also regulates, rewards, and punishes each specific driver, as required. Furthermore, the trust score determines the classes of message that a driver can access. Dissemination of feedback is only required when there is an attack (conflicting information). A Road-Side Unit (RSU) rules on a dispute, using either the sum of products of trust and feedback or official vehicle data if available. These “untrue attacks” are resolved by an RSU using collaboration, and then providing a fixed amount of reward and punishment, as appropriate. Repeated attacks are addressed by incremental punishments and potentially driver access-blocking when conditions are met. The lack of sophistication in this fixed RSU assessment scheme is then addressed by a novel fuzzy logic-based RSU approach. This determines a fairer level of reward and punishment based on the severity of incident, driver past behaviour, and RSU confidence. The fuzzy RSU controller assesses judgements in such a way as to encourage drivers to improve their behaviour. Although any driver can lie in any situation, we believe that trustworthy drivers are more likely to remain so, and vice versa. We capture this behaviour in a Markov chain model for the sender and reporter driver behaviours where a driver’s truthfulness is influenced by their trust score and trust state. For each trust state, the driver’s likelihood of lying or honesty is set by a probability distribution which is different for each state. This framework is analysed in Veins using various classes of vehicles under different traffic conditions. Results confirm that the framework operates effectively in the presence of untrue and inconsistent attacks. The correct functioning is confirmed with the system appropriately classifying incidents when clarifier vehicles send truthful feedback. The framework is also evaluated against a centralized reputation scheme and the results demonstrate that it outperforms the reputation approach in terms of reduced communication overhead and shorter response time. Next, we perform a set of experiments to evaluate the performance of the fuzzy assessment in Veins. The fuzzy and fixed RSU assessment schemes are compared, and the results show that the fuzzy scheme provides better overall driver behaviour. The Markov chain driver behaviour model is also examined when changing the initial trust score of all drivers

    Multidisciplinary perspectives on Artificial Intelligence and the law

    Get PDF
    This open access book presents an interdisciplinary, multi-authored, edited collection of chapters on Artificial Intelligence (‘AI’) and the Law. AI technology has come to play a central role in the modern data economy. Through a combination of increased computing power, the growing availability of data and the advancement of algorithms, AI has now become an umbrella term for some of the most transformational technological breakthroughs of this age. The importance of AI stems from both the opportunities that it offers and the challenges that it entails. While AI applications hold the promise of economic growth and efficiency gains, they also create significant risks and uncertainty. The potential and perils of AI have thus come to dominate modern discussions of technology and ethics – and although AI was initially allowed to largely develop without guidelines or rules, few would deny that the law is set to play a fundamental role in shaping the future of AI. As the debate over AI is far from over, the need for rigorous analysis has never been greater. This book thus brings together contributors from different fields and backgrounds to explore how the law might provide answers to some of the most pressing questions raised by AI. An outcome of the Católica Research Centre for the Future of Law and its interdisciplinary working group on Law and Artificial Intelligence, it includes contributions by leading scholars in the fields of technology, ethics and the law.info:eu-repo/semantics/publishedVersio

    Natural and Technological Hazards in Urban Areas

    Get PDF
    Natural hazard events and technological accidents are separate causes of environmental impacts. Natural hazards are physical phenomena active in geological times, whereas technological hazards result from actions or facilities created by humans. In our time, combined natural and man-made hazards have been induced. Overpopulation and urban development in areas prone to natural hazards increase the impact of natural disasters worldwide. Additionally, urban areas are frequently characterized by intense industrial activity and rapid, poorly planned growth that threatens the environment and degrades the quality of life. Therefore, proper urban planning is crucial to minimize fatalities and reduce the environmental and economic impacts that accompany both natural and technological hazardous events

    Investigating best practices for Structure-from-Motion photogrammetry of turbid benthic environments

    Get PDF
    Turbid water environments represent 8-12% of the global continental shelf regions, representing a variety of benthic habitats with high ecosystem value. The aim of this thesis is to optimise Structure-from-Motion photogrammetry in turbid benthic environments. It was found that these environments require a camera with a large sensor size and resolution, custom settings to suit the conditions, photos taken at close range, and in certain cases image enhancement, to improve the accuracy of 3D models

    A Supportive Framework for the Development of a Digital Twin for Wind Turbines Using Open-Source Software Tiril Malmedal Mechanics and Process Technology

    Get PDF
    The world is facing a global climate crisis. Renewable energy is one of the big solutions, nevertheless, there are technological challenges. Wind power is an important part of the renewable energy system. With the digitalization of industry, smart monitoring and operation is an important step towards efficient use of resources. Thus, Digital Twins (DT) should be applied to enhance power output. Digital Twins for energy systems combine many fields of study, such as smart monitoring, big data technology, and advanced physical modeling. Frameworks for the structure of Digital Twins are many, but there are few standardized methods based on the experience of such developed Digital Twins. An integrative review on the topic of Digital Twins with the goal of creating a conceptual development framework for DTs with open-source software is performed. However, the framework is yet to be tested experimentally but is nevertheless an important contribution toward the understanding of DT technology development. The result of the review is a seven-step framework identifying potential components and methods needed to create a fully developed DT for the aerodynamics of a wind turbine. Suggested steps are Assessment, Create, Communicate, Aggregate, Analyze, Insight, and Act. The goal is that the framework can stimulate more research on digital twins for small-scale wind power. Thus, making small-scale wind power more accessible and affordable

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well

    Redes de sensores para la predicción solar a corto plazo en el marco de las microgrids y smartcities

    Get PDF
    En los últimos años, la potencia fotovoltaica instalada global ha crecido notablemente, llegando a superar el 20\% de la demanda energética en varios países. Esto se debe en parte a la reducción de costes de esta tecnología y la política de promover el uso de energías renovables. La producción de la energía fotovoltaica depende directamente de los niveles de radiación solar incidente sobre los paneles, que se trata de un recurso externo y variable. La irradiancia solar fluctúa principalmente por dos factores, pero la mayor variabilidad está asociada a la presencia de nubes, y estas variaciones tienen una duración que va desde unos pocos segundos hasta varios minutos. Debido al funcionamiento del mercado eléctrico y a la nula inercia en la producción energética de estos sistemas, los productores fotovoltaicos necesitan de predicciones precisas en diferentes horizontes temporales con el fin de maximizar la energía ofertada en el mercado, incrementando de este modo la integración de la misma. Por otra parte, también necesitan datos en tiempo real para una gestión más óptima del sistema fotovoltaico. Las predicciones a corto plazo se emplean para el sistema de control y balance de la producción energética, y a medio plazo para la programación y venta de energía en el mercado eléctrico, sin embargo, los sistemas actuales de predicción son escasos y caros para ser contemplados en sistemas de media y pequeña escala. Numerosos estudios han intentado cubrir la necesidad de predicción a corto plazo estimando espacio-temporalmente el campo de irradiancia con cámaras de cielo completo e imágenes de satélite, sin embargo, estos métodos están limitados por la problemática de la conversión de imagen a irradiancia. Investigadores influyentes en este área creen que las redes de sensores de irradiancia pueden jugar un papel fundamental en este contexto, ofreciendo en tiempo real varias medidas espaciales y con la alta resolución temporal necesaria. La información espacio-temporal capturada por la red permitiría estimar el campo de irradiancia y analizar su evolución, capturando incluso los eventos más rápidos. Las tecnologías inalámbricas han evolucionado en el marco de las ciudades inteligentes y el internet de las cosas, apareciendo tecnologías que se adecuan a diferentes escenarios. El interés mostrado en estos sistemas ha producido un abaratamiento de los módulos de comunicaciones inalámbricas, gracias a la economía de escala. Las redes de sensores podrían beneficiarse de estas tecnologías inalámbricas, ofreciendo a su vez un ahorro en costes del despliegue respecto a su equivalente cableado y una mayor flexibilidad para integrar nuevos nodos en la red. Por ello, esta tesis se pretende estudiar el potencial de estas redes inalámbricas como fuente de información crítica para la gestión a corto plazo de sistemas fotovoltaicos, y la explotación de los datos de la misma, implementando y desarrollando algoritmos con estos datos con fines de predicción de la producción y para la operación óptima de estos sistemas.In recent years, global installed photovoltaic power has grown significantly, exceeding 20% of energy demand in several countries. This is partly due to the cost reduction of this technology and the policy of promoting the use of renewable energies. Photovoltaic energy production depends directly on the levels of solar radiation incident on the panels, which is an external and variable resource. Solar irradiance fluctuates mainly due to two factors, but the greatest variability is associated with the presence of clouds, and these variations range in duration from a few seconds to several minutes. Due to the functioning of the electricity market and the lack of inertia in the energy production of these systems, PV producers need accurate forecasts at different time horizons in order to maximize the energy offered in the market, thus increasing the integration of the same. On the other hand, they also need real-time data for more optimal PV system management. Short-term forecasts are used for the energy production control and balancing system, and medium-term forecasts are used for scheduling and selling energy in the electricity market, however, current forecasting systems are scarce and expensive to be contemplated in medium and small-scale systems. Numerous studies have attempted to address the need for short-term forecasting by estimating the spatio-temporal irradiance field with full-sky cameras and satellite imagery, however, these methods are limited by the problems of image-to-irradiance conversion. Influential researchers in this area believe that irradiance sensor networks can play a key role in this context, providing various spatial measurements in real time and with the necessary high temporal resolution. The spatio-temporal information captured by the network would allow estimating the irradiance field and analyzing its evolution, capturing even the fastest events. Wireless technologies have evolved within the framework of smart cities and the internet of things, with the emergence of technologies that are suitable for different scenarios. The interest shown in these systems has led to a reduction in the cost of wireless communications modules, thanks to economies of scale. Sensor networks could benefit from these wireless technologies, offering savings in deployment costs compared to their wired equivalent and greater flexibility to integrate new nodes in the network. Thus, this thesis aims to study the potential of these wireless networks as a source of critical information for the short-term management of photovoltaic systems, and the exploitation of the data from it, implementing and developing algorithms with this data for production prediction purposes and for the optimal operation of these systems

    Multi-objective resource optimization in space-aerial-ground-sea integrated networks

    Get PDF
    Space-air-ground-sea integrated (SAGSI) networks are envisioned to connect satellite, aerial, ground, and sea networks to provide connectivity everywhere and all the time in sixth-generation (6G) networks. However, the success of SAGSI networks is constrained by several challenges including resource optimization when the users have diverse requirements and applications. We present a comprehensive review of SAGSI networks from a resource optimization perspective. We discuss use case scenarios and possible applications of SAGSI networks. The resource optimization discussion considers the challenges associated with SAGSI networks. In our review, we categorized resource optimization techniques based on throughput and capacity maximization, delay minimization, energy consumption, task offloading, task scheduling, resource allocation or utilization, network operation cost, outage probability, and the average age of information, joint optimization (data rate difference, storage or caching, CPU cycle frequency), the overall performance of network and performance degradation, software-defined networking, and intelligent surveillance and relay communication. We then formulate a mathematical framework for maximizing energy efficiency, resource utilization, and user association. We optimize user association while satisfying the constraints of transmit power, data rate, and user association with priority. The binary decision variable is used to associate users with system resources. Since the decision variable is binary and constraints are linear, the formulated problem is a binary linear programming problem. Based on our formulated framework, we simulate and analyze the performance of three different algorithms (branch and bound algorithm, interior point method, and barrier simplex algorithm) and compare the results. Simulation results show that the branch and bound algorithm shows the best results, so this is our benchmark algorithm. The complexity of branch and bound increases exponentially as the number of users and stations increases in the SAGSI network. We got comparable results for the interior point method and barrier simplex algorithm to the benchmark algorithm with low complexity. Finally, we discuss future research directions and challenges of resource optimization in SAGSI networks

    Impact of Docker Container Virtualization On Wireless Mesh Network by Using Software-Defined Network

    Get PDF
    In today’s advanced digital world era, it is extremely difficult for small enterprises or organizations to merge traditional or legacy computer network devices/equipment and wireless mesh networking devices with the latest digital computer network technology with respect to the expense of buying and maintaining expensive branded networking devices. However, today, by applying the neatly Software-defined networking, the OpenFlow protocol along with virtualization such as docker containers, which is a pack of their specific libraries, configured files, and software, provides advantages over proprietary or branded computer networking devices with respect to purchasing expenditure, operational expenditure, and improved performance in computer networking. Redistribution of routing protocol is very essential when using various autonomous systems in wireless mesh networks. Docker containers of frr and quagga give an edge over traditional or branded physical router devices, some docker containers are used as wired and wireless hosts/clients in the wireless mesh network. The novel idea used in this paper is on how to use the different software-defined controllers (Ryu and Pox controller) in a docker containerized wireless mesh network to analyse with respect to packet transfer, jitter in transmission, minimum delay in transmission, maximum delay in transmission, the average delay in transmission,  delay standard deviation bit-rate, send packets,  average packets drop, dropped packets along-with average loss-burst size in Mininet Wi-Fi testbed at the different scenario and the result shows that by using the docker container virtualization along with software-defined network two different controllers improves the performance and optimize the wireless mesh network. In addition, it shows that by using containerization and virtualization, capital expenditure and operational expenditure can be reduced in designing and developing wireless mesh network topologies.&nbsp
    corecore