341 research outputs found

    On the Security of the Automatic Dependent Surveillance-Broadcast Protocol

    Full text link
    Automatic dependent surveillance-broadcast (ADS-B) is the communications protocol currently being rolled out as part of next generation air transportation systems. As the heart of modern air traffic control, it will play an essential role in the protection of two billion passengers per year, besides being crucial to many other interest groups in aviation. The inherent lack of security measures in the ADS-B protocol has long been a topic in both the aviation circles and in the academic community. Due to recently published proof-of-concept attacks, the topic is becoming ever more pressing, especially with the deadline for mandatory implementation in most airspaces fast approaching. This survey first summarizes the attacks and problems that have been reported in relation to ADS-B security. Thereafter, it surveys both the theoretical and practical efforts which have been previously conducted concerning these issues, including possible countermeasures. In addition, the survey seeks to go beyond the current state of the art and gives a detailed assessment of security measures which have been developed more generally for related wireless networks such as sensor networks and vehicular ad hoc networks, including a taxonomy of all considered approaches.Comment: Survey, 22 Pages, 21 Figure

    Wireless security for secure facilities

    Get PDF
    This thesis presents methods for securing a facility that has wireless connectivity. The goal of this research is to develop a solution to securing a facility that utilizes wireless communications. The research will introduce methods to track and locate the position of attackers. This research also introduces the idea of using a Honeynet system for added security. This research uses what is called Defense-In-Depth. Defense-in-depth is when multiple layers of security are used. The first of the layers is the Zone of Interference. This Zone is an area where jammer transmitters and directive antennas are set up to take advantage of the near-far-effect. The idea is to use the near-far-effect to give a stronger signal on the perimeter of the secure area, to mask any signals escaping from the secure area. This Zone uses directive Yagi antenna arrays to direct the radiation. There are multiple jamming methods that are utilized within this Zone. The next layer of security is the Honeynet Zone. The idea is to make an attacker believe that they are seeing real network traffic. This is done at the Honeynet Zone once a device has been determined to be unfriendly. Decoy mobile devices are first placed within the Honeynet Zone. Spoofed traffic is then created between the Honeynet base stations and the decoy mobile devices zone; using adaptive antennas incorporated within the design to face the signals away from the inside secure area. The third defense is position location and tracking. The idea is to have constant tracking of all devices in the area. There are several methods available to locate and track a device that is giving off an RF signal. This thesis looks at combining all these methods into an integrated, and more robust, facility security system

    Importance of communication and information technology and its applications in the development and integration of performance in seaports

    Get PDF
    Abstract:The maritime industry is a global transporter of the goods of modern globalized economies. Shipping plays a vital role in today’s economy, with over 90% of the world’s trade carried by sea[1].The efficient transportation of cargoes impact on both consumers and the global economy.In order to improve the safety and efficiency of maritime transport and the protection of the sea and marine environment, it is inevitable to use modern information and communication technologies when collecting, storing, processing, presenting and distributing relevant data and information to the participants in maritime transport. The Smart Port used information technology (IT) extensively to create a high-tech port.The key factors contributing to the success of the IT and communication infrastructure in the Smart port are the  ability to meet the changing demands of users and to keep up with the rapid developments in IT and the ability to accommodate new technology developments without having to constantly restructure.This paper presented the key issues related to navigation systems, communication networks and information technology and its applications to secure the ships and the development of business performance for the transfer and circulation of goods within the seaports with high efficiency and the impact of this on the national economy.</p

    Secure Wireless Avionics Intra-Communications the SCOTT approach

    Get PDF
    Paper presented at DecPS 2018 (held in conjunction with Ada-Europe 2018, 18-22 June, Lisbon, Portugal).This paper presents the objectives and architecture of the use case of secure wireless avionics intracommunications of the European Project SCOTT (secure connected trustable things). SCOTT aims to build trust of the Internet of Things (IoT) in industrial applications. SCOTT addresses multiple issues such as security, safety, privacy, and dependability across 5 industrial domains: automotive, aeronautics, railway, building and healthcare. The aeronautics use case focuses on the application for active flow control (AFC) based on dense wireless sensor and actuator networks (DWSANs). Topics about security, vulnerabilities and safety in the general field of wireless avionics intra-communications (WAICs) will be addressed. The paper presents preliminary conclusions of the vulnerabilities and security solutions across different entities and layers of the aeronautics IoT architecture.info:eu-repo/semantics/publishedVersio

    A Model of Data Forwarding in MANETs for Lightweight Detection of Malicious Packet Dropping

    Get PDF
    This work introduces a model of data forwarding in MANETs which is used for recognizing malicious packet dropping behaviors. First, different legitimate packet discard situations are modeled, such as those generated by collisions, channel errors or mobility related droppings. Second, we propose an anomaly-based IDS system based on an enhanced windowing method to carry out the collection and analysis of selected crosslayer features. Third, a real deployment of the IDS is also considered by suggesting a methodology for the collection of the selected features in a distributed manner. We evaluate our proposal in a simulation framework and the experimental results show a considerable enhancement in detection results when compared with other approaches in the literature. For instance, our scheme shows a 22% improvement in terms of true positives rate and a remarkable 83% improvement in terms of false positives rate when compared to previous well-known statistical solutions. Finally, it is notable the simplicity and lightweightness of the proposal

    Systematic Review on Security and Privacy Requirements in Edge Computing: State of the Art and Future Research Opportunities

    Get PDF
    Edge computing is a promising paradigm that enhances the capabilities of cloud computing. In order to continue patronizing the computing services, it is essential to conserve a good atmosphere free from all kinds of security and privacy breaches. The security and privacy issues associated with the edge computing environment have narrowed the overall acceptance of the technology as a reliable paradigm. Many researchers have reviewed security and privacy issues in edge computing, but not all have fully investigated the security and privacy requirements. Security and privacy requirements are the objectives that indicate the capabilities as well as functions a system performs in eliminating certain security and privacy vulnerabilities. The paper aims to substantially review the security and privacy requirements of the edge computing and the various technological methods employed by the techniques used in curbing the threats, with the aim of helping future researchers in identifying research opportunities. This paper investigate the current studies and highlights the following: (1) the classification of security and privacy requirements in edge computing, (2) the state of the art techniques deployed in curbing the security and privacy threats, (3) the trends of technological methods employed by the techniques, (4) the metrics used for evaluating the performance of the techniques, (5) the taxonomy of attacks affecting the edge network, and the corresponding technological trend employed in mitigating the attacks, and, (6) research opportunities for future researchers in the area of edge computing security and privacy

    Enabling sustainable power distribution networks by using smart grid communications

    Get PDF
    Smart grid modernization enables integration of computing, information and communications capabilities into the legacy electric power grid system, especially the low voltage distribution networks where various consumers are located. The evolutionary paradigm has initiated worldwide deployment of an enormous number of smart meters as well as renewable energy sources at end-user levels. The future distribution networks as part of advanced metering infrastructure (AMI) will involve decentralized power control operations under associated smart grid communications networks. This dissertation addresses three potential problems anticipated in the future distribution networks of smart grid: 1) local power congestion due to power surpluses produced by PV solar units in a neighborhood that demands disconnection/reconnection mechanisms to alleviate power overflow, 2) power balance associated with renewable energy utilization as well as data traffic across a multi-layered distribution network that requires decentralized designs to facilitate power control as well as communications, and 3) a breach of data integrity attributed to a typical false data injection attack in a smart metering network that calls for a hybrid intrusion detection system to detect anomalous/malicious activities. In the first problem, a model for the disconnection process via smart metering communications between smart meters and the utility control center is proposed. By modeling the power surplus congestion issue as a knapsack problem, greedy solutions for solving such problem are proposed. Simulation results and analysis show that computation time and data traffic under a disconnection stage in the network can be reduced. In the second problem, autonomous distribution networks are designed that take scalability into account by dividing the legacy distribution network into a set of subnetworks. A power-control method is proposed to tackle the power flow and power balance issues. Meanwhile, an overlay multi-tier communications infrastructure for the underlying power network is proposed to analyze the traffic of data information and control messages required for the associated power flow operations. Simulation results and analysis show that utilization of renewable energy production can be improved, and at the same time data traffic reduction under decentralized operations can be achieved as compared to legacy centralized management. In the third problem, an attack model is proposed that aims to minimize the number of compromised meters subject to the equality of an aggregated power load in order to bypass detection under the conventionally radial tree-like distribution network. A hybrid anomaly detection framework is developed, which incorporates the proposed grid sensor placement algorithm with the observability attribute. Simulation results and analysis show that the network observability as well as detection accuracy can be improved by utilizing grid-placed sensors. Conclusively, a number of future works have also been identified to furthering the associated problems and proposed solutions

    ACUTA Journal of Telecommunications in Higher Education

    Get PDF
    In This Issue Technology Advances: The View from 10,000 Feet WAP: Are You Ready for a Wireless World? Virtual Private Networks: How They Can Work for Colleges and Universities Network Security: How\u27s Your Posture? Software for Rent: Contact ASP Voicing My IPinion Institutional Excellence Award: Colorado Christian University Columns Interview Book Revie

    Design And Implementation Of Motion Sensitive UHF RFID System

    Get PDF
    Radio Frequency Identification (RFID) is a method of remotely storing and retrieving data using devices called RFID tags. RFID system components comprise of RFID tag and RFID reader. The RFID tag stores a unique identification of the object that is attached to it. However, it does not provide information about the conditions of the object that it detects. Sensor node in Wireless Sensor Network (WSN), on the other hand, provides information about the condition of the object and its environment. Therefore, with the integration of RFID and WSN technology, their disadvantages can be overcome and their advantages can be put into some important applications
    corecore