1,070 research outputs found

    Using high resolution displays for high resolution cardiac data

    Get PDF
    The ability to perform fast, accurate, high resolution visualization is fundamental to improving our understanding of anatomical data. As the volumes of data increase from improvements in scanning technology, the methods applied to rendering and visualization must evolve. In this paper we address the interactive display of data from high resolution MRI scanning of a rabbit heart and subsequent histological imaging. We describe a visualization environment involving a tiled LCD panel display wall and associated software which provide an interactive and intuitive user interface. The oView software is an OpenGL application which is written for the VRJuggler environment. This environment abstracts displays and devices away from the application itself, aiding portability between different systems, from desktop PCs to multi-tiled display walls. Portability between display walls has been demonstrated through its use on walls at both Leeds and Oxford Universities. We discuss important factors to be considered for interactive 2D display of large 3D datasets, including the use of intuitive input devices and level of detail aspects

    Factors influencing visual attention switch in multi-display user interfaces: a survey

    Get PDF
    Multi-display User Interfaces (MDUIs) enable people to take advantage of the different characteristics of different display categories. For example, combining mobile and large displays within the same system enables users to interact with user interface elements locally while simultaneously having a large display space to show data. Although there is a large potential gain in performance and comfort, there is at least one main drawback that can override the benefits of MDUIs: the visual and physical separation between displays requires that users perform visual attention switches between displays. In this paper, we present a survey and analysis of existing data and classifications to identify factors that can affect visual attention switch in MDUIs. Our analysis and taxonomy bring attention to the often ignored implications of visual attention switch and collect existing evidence to facilitate research and implementation of effective MDUIs.Postprin

    Run-time Spatial Mapping of Streaming Applications to Heterogeneous Multi-Processor Systems

    Get PDF
    In this paper, we define the problem of spatial mapping. We present reasons why performing spatial mappings at run-time is both necessary and desirable. We propose what is—to our knowledge—the first attempt at a formal description of spatial mappings for the embedded real-time streaming application domain. Thereby, we introduce criteria for a qualitative comparison of these spatial mappings. As an illustration of how our formalization relates to practice, we relate our own spatial mapping algorithm to the formal model

    Mobile Map Browsers: Anticipated User Interaction for Data Pre-fetching

    Get PDF
    When browsing a graphical display of geospatial data on mobile devices, users typically change the displayed maps by panning, zooming in and out, or rotating the device. Limited storage space on mobile devices and slow wireless communications, however, impede the performance of these operations. To overcome the bottleneck that all map data to be displayed on the mobile device need to be downloaded on demand, this thesis investigates how anticipated user interactions affect intelligent pre-fetching so that an on-demand download session is extended incrementally. User interaction is defined as a set of map operations that each have corresponding effects on the spatial dataset required to generate the display. By anticipating user interaction based on past behavior and intuition on when waiting for data is acceptable, it is possible to device a set of strategies to better prepare the device with data for future use. Users that engage with interactive map displays for a variety of tasks, whether it be navigation, information browsing, or data collection, experience a dynamic display to accomplish their goal. With vehicular navigation, the display might update itself as a result of a GPS data stream reflecting movement through space. This movement is not random, especially as is the case of moving vehicles and, therefore, this thesis suggests that mobile map data could be pre-fetched in order to improve usability. Pre-fetching memory-demanding spatial data can benefit usability in several ways, but in particular it can (1) reduce latency when downloading data over wireless connections and (2) better prepare a device for situations where wireless internet connectivity is weak or intermittent. This thesis investigates mobile map caching and devises an algorithm for pre-fetching data on behalf of the application user. Two primary models are compared: isotropic (direction-independent) and anisotropic (direction-dependent) pre-fetching. A prefetching simulation is parameterized with many trajectories that vary in complexity (a metric of direction change within the trajectory) and it is shown that, although anisotropic pre-fetching typically results in a better pre-fetching accuracy, it is not ideal for all scenarios. This thesis suggests a combination of models to accommodate the significant variation in moving object trajectories. In addition, other methods for pre-fetching spatial data are proposed for future research

    Software-Enhanced Teaching and Visualization Capabilities of an Ultra-High-Resolution Video Wall

    Full text link
    This paper presents a modular approach to enhance the capabilities and features of a visualization and teaching room using software. This approach was applied to a room with a large, high resolution (7680×\times4320 pixels), tiled screen of 13 ×\times 7.5 feet as its main display, and with a variety of audio and video inputs, connected over a network. Many of the techniques described are possible because of a software-enhanced setup, utilizing existing hardware and a collection of mostly open-source tools, allowing to perform collaborative, high-resolution visualizations as well as broadcasting and recording workshops and lectures. The software approach is flexible and allows one to add functionality without changing the hardware.Comment: PEARC'19: "Practice and Experience in Advanced Research Computing", July 28-August 1, 2019 - Chicago, IL, US

    Web-Based Visualization of Very Large Scientific Astronomy Imagery

    Full text link
    Visualizing and navigating through large astronomy images from a remote location with current astronomy display tools can be a frustrating experience in terms of speed and ergonomics, especially on mobile devices. In this paper, we present a high performance, versatile and robust client-server system for remote visualization and analysis of extremely large scientific images. Applications of this work include survey image quality control, interactive data query and exploration, citizen science, as well as public outreach. The proposed software is entirely open source and is designed to be generic and applicable to a variety of datasets. It provides access to floating point data at terabyte scales, with the ability to precisely adjust image settings in real-time. The proposed clients are light-weight, platform-independent web applications built on standard HTML5 web technologies and compatible with both touch and mouse-based devices. We put the system to the test and assess the performance of the system and show that a single server can comfortably handle more than a hundred simultaneous users accessing full precision 32 bit astronomy data.Comment: Published in Astronomy & Computing. IIPImage server available from http://iipimage.sourceforge.net . Visiomatic code and demos available from http://www.visiomatic.org

    Perception and Mitigation of Artifacts in a Flat Panel Tiled Display System

    Get PDF
    Flat panel displays continue to dominate the display market. Larger, higher resolution flat panel displays are now in demand for scientific, business, and entertainment purposes. Manufacturing such large displays is currently difficult and expensive. Alternately, larger displays can be constructed by tiling smaller flat panel displays. While this approach may prove to be more cost effective, appropriate measures must be taken to achieve visual seamlessness and uniformity. In this project we conducted a set of experiments to study the perception and mitigation of image artifacts in tiled display systems. In the first experiment we used a prototype tiled display to investigate its current viability and to understand what critical perceptible visual artifacts exist in this system. Based on word frequencies of the survey responses, the most disruptive artifacts perceived were ranked. On the basis of these findings, we conducted a second experiment to test the effectiveness of image processing algorithms designed to mitigate some of the most distracting artifacts without changing the physical properties of the display system. Still images were processed using several algorithms and evaluated by observers using magnitude scaling. Participants in the experiment noticed statistically significant improvement in image quality from one of the two algorithms. Similar testing should be conducted to evaluate the effectiveness of the algorithms on video content. While much work still needs to be done, the contributions of this project should enable the development of an image processing pipeline to mitigate perceived artifacts in flat panel display systems and provide the groundwork for extending such a pipeline to realtime applications

    I-Light Symposium 2005 Proceedings

    Get PDF
    I-Light was made possible by a special appropriation by the State of Indiana. The research described at the I-Light Symposium has been supported by numerous grants from several sources. Any opinions, findings and conclusions, or recommendations expressed in the 2005 I-Light Symposium Proceedings are those of the researchers and authors and do not necessarily reflect the views of the granting agencies.Indiana University Office of the Vice President for Research and Information Technology, Purdue University Office of the Vice President for Information Technology and CI
    corecore