449 research outputs found

    Physical Layer Service Integration in 5G: Potentials and Challenges

    Full text link
    High transmission rate and secure communication have been identified as the key targets that need to be effectively addressed by fifth generation (5G) wireless systems. In this context, the concept of physical-layer security becomes attractive, as it can establish perfect security using only the characteristics of wireless medium. Nonetheless, to further increase the spectral efficiency, an emerging concept, termed physical-layer service integration (PHY-SI), has been recognized as an effective means. Its basic idea is to combine multiple coexisting services, i.e., multicast/broadcast service and confidential service, into one integral service for one-time transmission at the transmitter side. This article first provides a tutorial on typical PHY-SI models. Furthermore, we propose some state-of-the-art solutions to improve the overall performance of PHY-SI in certain important communication scenarios. In particular, we highlight the extension of several concepts borrowed from conventional single-service communications, such as artificial noise (AN), eigenmode transmission etc., to the scenario of PHY-SI. These techniques are shown to be effective in the design of reliable and robust PHY-SI schemes. Finally, several potential research directions are identified for future work.Comment: 12 pages, 7 figure

    Dispensing with channel estimation: differentially modulated cooperative wireless communications

    No full text
    As a benefit of bypassing the potentially excessive complexity and yet inaccurate channel estimation, differentially encoded modulation in conjunction with low-complexity noncoherent detection constitutes a viable candidate for user-cooperative systems, where estimating all the links by the relays is unrealistic. In order to stimulate further research on differentially modulated cooperative systems, a number of fundamental challenges encountered in their practical implementations are addressed, including the time-variant-channel-induced performance erosion, flexible cooperative protocol designs, resource allocation as well as its high-spectral-efficiency transceiver design. Our investigations demonstrate the quantitative benefits of cooperative wireless networks both from a pure capacity perspective as well as from a practical system design perspective

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Full-duplex wireless communications: challenges, solutions and future research directions

    No full text
    The family of conventional half-duplex (HD) wireless systems relied on transmitting and receiving in different time-slots or frequency sub-bands. Hence the wireless research community aspires to conceive full-duplex (FD) operation for supporting concurrent transmission and reception in a single time/frequency channel, which would improve the attainable spectral efficiency by a factor of two. The main challenge encountered in implementing an FD wireless device is the large power difference between the self-interference (SI) imposed by the device’s own transmissions and the signal of interest received from a remote source. In this survey, we present a comprehensive list of the potential FD techniques and highlight their pros and cons. We classify the SI cancellation techniques into three categories, namely passive suppression, analog cancellation and digital cancellation, with the advantages and disadvantages of each technique compared. Specifically, we analyse the main impairments (e.g. phase noise, power amplifier nonlinearity as well as in-phase and quadrature-phase (I/Q) imbalance, etc.) that degrading the SI cancellation. We then discuss the FD based Media Access Control (MAC)-layer protocol design for the sake of addressing some of the critical issues, such as the problem of hidden terminals, the resultant end-to-end delay and the high packet loss ratio (PLR) due to network congestion. After elaborating on a variety of physical/MAC-layer techniques, we discuss potential solutions conceived for meeting the challenges imposed by the aforementioned techniques. Furthermore, we also discuss a range of critical issues related to the implementation, performance enhancement and optimization of FD systems, including important topics such as hybrid FD/HD scheme, optimal relay selection and optimal power allocation, etc. Finally, a variety of new directions and open problems associated with FD technology are pointed out. Our hope is that this treatise will stimulate future research efforts in the emerging field of FD communication

    Cooperative Relaying In Power Line Environment: A Survey and Tutorial

    Get PDF
    Exchange of information is essential in any society and the demand for faster, cheaper, and secure communications is increasing every day. With other hi-tech initiatives like IPv6 and Internet-of-Things (IOT) already in the horizon, demand for broadband is set to escalate beyond its current level. Inherently laden in the challenges posed by this technology are fresh opportunities in terms of penetration of data services into rural communities and development of innovative strategies for more efficient use of the grid. Though still in its developmental phase/stage, Power Line Communication (PLC) has grown beyond theoretical fantasy to become a reality. The proofs are the readily available PLC systems that can be purchased off the shelfto achieve in-house networking and the much talked about, smart metering technology; generally regarded as the “new bride” in utilities industry. One of the biggest gains of PLC is its use of existing electrical cables, thereby eliminating cost of installation and maintenance of data cables. However, given that the power infrastructure was traditionally built to deliver electricity, data signals do suffer various forms of distortions and impairments as they transit it. This paper presents a tutorial on the deployed wireless system technique which is to be adapted to PLC scenario for the purpose of managing the available source energy for achieving reliable communication system. One of these techniques is the cooperative diversity. Its application and deployment in power line environment is explored. The improvement achieved through cooperative diversity in some PLC systems were presented along with the associated limitations. Finally, future areas of research which will further improve the reliability of PLC systems and reduce its power consumption during transmission is shown

    Full-Duplex Wireless for 6G: Progress Brings New Opportunities and Challenges

    Full text link
    The use of in-band full-duplex (FD) enables nodes to simultaneously transmit and receive on the same frequency band, which challenges the traditional assumption in wireless network design. The full-duplex capability enhances spectral efficiency and decreases latency, which are two key drivers pushing the performance expectations of next-generation mobile networks. In less than ten years, in-band FD has advanced from being demonstrated in research labs to being implemented in standards and products, presenting new opportunities to utilize its foundational concepts. Some of the most significant opportunities include using FD to enable wireless networks to sense the physical environment, integrate sensing and communication applications, develop integrated access and backhaul solutions, and work with smart signal propagation environments powered by reconfigurable intelligent surfaces. However, these new opportunities also come with new challenges for large-scale commercial deployment of FD technology, such as managing self-interference, combating cross-link interference in multi-cell networks, and coexistence of dynamic time division duplex, subband FD and FD networks.Comment: 21 pages, 15 figures, accepted to an IEEE Journa
    corecore