381 research outputs found

    Towards Efficient Communications in Federated Learning: A Contemporary Survey

    Full text link
    In the traditional distributed machine learning scenario, the user's private data is transmitted between nodes and a central server, which results in great potential privacy risks. In order to balance the issues of data privacy and joint training of models, federated learning (FL) is proposed as a special distributed machine learning with a privacy protection mechanism, which can realize multi-party collaborative computing without revealing the original data. However, in practice, FL faces many challenging communication problems. This review aims to clarify the relationship between these communication problems, and focus on systematically analyzing the research progress of FL communication work from three perspectives: communication efficiency, communication environment, and communication resource allocation. Firstly, we sort out the current challenges existing in the communications of FL. Secondly, we have compiled articles related to FL communications, and then describe the development trend of the entire field guided by the logical relationship between them. Finally, we point out the future research directions for communications in FL

    Heterogeneous Federated Learning: State-of-the-art and Research Challenges

    Full text link
    Federated learning (FL) has drawn increasing attention owing to its potential use in large-scale industrial applications. Existing federated learning works mainly focus on model homogeneous settings. However, practical federated learning typically faces the heterogeneity of data distributions, model architectures, network environments, and hardware devices among participant clients. Heterogeneous Federated Learning (HFL) is much more challenging, and corresponding solutions are diverse and complex. Therefore, a systematic survey on this topic about the research challenges and state-of-the-art is essential. In this survey, we firstly summarize the various research challenges in HFL from five aspects: statistical heterogeneity, model heterogeneity, communication heterogeneity, device heterogeneity, and additional challenges. In addition, recent advances in HFL are reviewed and a new taxonomy of existing HFL methods is proposed with an in-depth analysis of their pros and cons. We classify existing methods from three different levels according to the HFL procedure: data-level, model-level, and server-level. Finally, several critical and promising future research directions in HFL are discussed, which may facilitate further developments in this field. A periodically updated collection on HFL is available at https://github.com/marswhu/HFL_Survey.Comment: 42 pages, 11 figures, and 4 table

    Decentralized and Model-Free Federated Learning: Consensus-Based Distillation in Function Space

    Full text link
    This paper proposes a fully decentralized federated learning (FL) scheme for Internet of Everything (IoE) devices that are connected via multi-hop networks. Because FL algorithms hardly converge the parameters of machine learning (ML) models, this paper focuses on the convergence of ML models in function spaces. Considering that the representative loss functions of ML tasks e.g, mean squared error (MSE) and Kullback-Leibler (KL) divergence, are convex functionals, algorithms that directly update functions in function spaces could converge to the optimal solution. The key concept of this paper is to tailor a consensus-based optimization algorithm to work in the function space and achieve the global optimum in a distributed manner. This paper first analyzes the convergence of the proposed algorithm in a function space, which is referred to as a meta-algorithm, and shows that the spectral graph theory can be applied to the function space in a manner similar to that of numerical vectors. Then, consensus-based multi-hop federated distillation (CMFD) is developed for a neural network (NN) to implement the meta-algorithm. CMFD leverages knowledge distillation to realize function aggregation among adjacent devices without parameter averaging. An advantage of CMFD is that it works even with different NN models among the distributed learners. Although CMFD does not perfectly reflect the behavior of the meta-algorithm, the discussion of the meta-algorithm's convergence property promotes an intuitive understanding of CMFD, and simulation evaluations show that NN models converge using CMFD for several tasks. The simulation results also show that CMFD achieves higher accuracy than parameter aggregation for weakly connected networks, and CMFD is more stable than parameter aggregation methods.Comment: submitted to IEEE TSIP

    Distillation-Based Semi-Supervised Federated Learning for Communication-Efficient Collaborative Training with Non-IID Private Data

    Get PDF
    This study develops a federated learning (FL) framework overcoming largely incremental communication costs due to model sizes in typical frameworks without compromising model performance. To this end, based on the idea of leveraging an unlabeled open dataset, we propose a distillation-based semi-supervised FL (DS-FL) algorithm that exchanges the outputs of local models among mobile devices, instead of model parameter exchange employed by the typical frameworks. In DS-FL, the communication cost depends only on the output dimensions of the models and does not scale up according to the model size. The exchanged model outputs are used to label each sample of the open dataset, which creates an additionally labeled dataset. Based on the new dataset, local models are further trained, and model performance is enhanced owing to the data augmentation effect. We further highlight that in DS-FL, the heterogeneity of the devices’ dataset leads to ambiguous of each data sample and lowing of the training convergence. To prevent this, we propose entropy reduction averaging, where the aggregated model outputs are intentionally sharpened. Moreover, extensive experiments show that DS-FL reduces communication costs up to 99 percent relative to those of the FL benchmark while achieving similar or higher classification accuracy
    corecore