7,455 research outputs found

    Throughput-driven floorplanning with wire pipelining

    Get PDF
    The size of future high-performance SoC is such that the time-of-flight of wires connecting distant pins in the layout can be much higher than the clock period. In order to keep the frequency as high as possible, the wires may be pipelined. However, the insertion of flip-flops may alter the throughput of the system due to the presence of loops in the logic netlist. In this paper, we address the problem of floorplanning a large design where long interconnects are pipelined by inserting the throughput in the cost function of a tool based on simulated annealing. The results obtained on a series of benchmarks are then validated using a simple router that breaks long interconnects by suitably placing flip-flops along the wires

    Statistical Power Supply Dynamic Noise Prediction in Hierarchical Power Grid and Package Networks

    Get PDF
    One of the most crucial high performance systems-on-chip design challenge is to front their power supply noise sufferance due to high frequencies, huge number of functional blocks and technology scaling down. Marking a difference from traditional post physical-design static voltage drop analysis, /a priori dynamic voltage drop/evaluation is the focus of this work. It takes into account transient currents and on-chip and package /RLC/ parasitics while exploring the power grid design solution space: Design countermeasures can be thus early defined and long post physical-design verification cycles can be shortened. As shown by an extensive set of results, a carefully extracted and modular grid library assures realistic evaluation of parasitics impact on noise and facilitates the power network construction; furthermore statistical analysis guarantees a correct current envelope evaluation and Spice simulations endorse reliable result

    Trains, Games, and Complexity: 0/1/2-Player Motion Planning through Input/Output Gadgets

    Full text link
    We analyze the computational complexity of motion planning through local "input/output" gadgets with separate entrances and exits, and a subset of allowed traversals from entrances to exits, each of which changes the state of the gadget and thereby the allowed traversals. We study such gadgets in the 0-, 1-, and 2-player settings, in particular extending past motion-planning-through-gadgets work to 0-player games for the first time, by considering "branchless" connections between gadgets that route every gadget's exit to a unique gadget's entrance. Our complexity results include containment in L, NL, P, NP, and PSPACE; as well as hardness for NL, P, NP, and PSPACE. We apply these results to show PSPACE-completeness for certain mechanics in Factorio, [the Sequence], and a restricted version of Trainyard, improving prior results. This work strengthens prior results on switching graphs and reachability switching games.Comment: 37 pages, 36 figure

    A design flow for performance planning : new paradigms for iteration free synthesis

    Get PDF
    In conventional design, higher levels of synthesis produce a netlist, from which layout synthesis builds a mask specification for manufacturing. Timing anal ysis is built into a feedback loop to detect timing violations which are then used to update specifications to synthesis. Such iteration is undesirable, and for very high performance designs, infeasible. The problem is likely to become much worse with future generations of technology. To achieve a non-iterative design flow, early synthesis stages should use wire planning to distribute delays over the functional elements and interconnect, and layout synthesis should use its degrees of freedom to realize those delays

    Advances in Nanowire-Based Computing Architectures

    Get PDF
    corecore