20,584 research outputs found

    A Multimedia Interactive Environment Using Program Archetypes: Divide-and-Conquer

    Get PDF
    As networks and distributed systems that can exploit parallel computing become more widespread, the need for ways to teach parallel programming effectively grows as well. Even though many colleges and universities provide courses on parallel programming [1], most of those courses are reserved for graduate students and advanced undergraduates. There is a demand for ways to teach fundamental parallel programming concepts to people with just a working knowledge of programming. By using the idea of a software archetype, and providing a learning environment that teaches both concept and coding, we hope to satisfy this need. This paper presents an overview of the multimedia approach we took in teaching parallel programming and offers Divide-and-Conquer as an example of its use

    Software (Re-)Engineering with PSF II: from architecture to implementation

    Full text link
    This paper presents ongoing research on the application of PSF in the field of software engineering and reengineering. We build a new implementation for the simulator of the PSF Toolkit starting from the specification in PSF of the architecture of a simple simulator and extend it with features to obtain the architecture of a full simulator. We apply refining and constraining techniques on the specification of the architecture to obtain a specification low enough to build an implementation from

    Component Substitution through Dynamic Reconfigurations

    Get PDF
    Component substitution has numerous practical applications and constitutes an active research topic. This paper proposes to enrich an existing component-based framework--a model with dynamic reconfigurations making the system evolve--with a new reconfiguration operation which "substitutes" components by other components, and to study its impact on sequences of dynamic reconfigurations. Firstly, we define substitutability constraints which ensure the component encapsulation while performing reconfigurations by component substitutions. Then, we integrate them into a substitutability-based simulation to take these substituting reconfigurations into account on sequences of dynamic reconfigurations. Thirdly, as this new relation being in general undecidable for infinite-state systems, we propose a semi-algorithm to check it on the fly. Finally, we report on experimentations using the B tools to show the feasibility of the developed approach, and to illustrate the paper's proposals on an example of the HTTP server.Comment: In Proceedings FESCA 2014, arXiv:1404.043

    Experiences using Z animation tools.

    Get PDF
    In this paper we describe our experience of using three different animation systems. We searched for and decided to use these tools in the context of a project which involved developing formal versions (in Z) of informal requirements documents, and then showing the formal versions to people in industry who were not Z users (or users of any formal techniques). So, an animator seemed a good way of showing the behaviour of a system described formally without the audience having to learn Z. A requirement, however, that the tools used have to satisfy is that they correctly animated Z (whatever that may mean) and they behave adequately in terms of speed and presentation. We have to report that none of the tools we looked at satisfy these requirements--though to be fair all of them are still under development

    Animating the evolution of software

    Get PDF
    The use and development of open source software has increased significantly in the last decade. The high frequency of changes and releases across a distributed environment requires good project management tools in order to control the process adequately. However, even with these tools in place, the nature of the development and the fact that developers will often work on many other projects simultaneously, means that the developers are unlikely to have a clear picture of the current state of the project at any time. Furthermore, the poor documentation associated with many projects has a detrimental effect when encouraging new developers to contribute to the software. A typical version control repository contains a mine of information that is not always obvious and not easy to comprehend in its raw form. However, presenting this historical data in a suitable format by using software visualisation techniques allows the evolution of the software over a number of releases to be shown. This allows the changes that have been made to the software to be identified clearly, thus ensuring that the effect of those changes will also be emphasised. This then enables both managers and developers to gain a more detailed view of the current state of the project. The visualisation of evolving software introduces a number of new issues. This thesis investigates some of these issues in detail, and recommends a number of solutions in order to alleviate the problems that may otherwise arise. The solutions are then demonstrated in the definition of two new visualisations. These use historical data contained within version control repositories to show the evolution of the software at a number of levels of granularity. Additionally, animation is used as an integral part of both visualisations - not only to show the evolution by representing the progression of time, but also to highlight the changes that have occurred. Previously, the use of animation within software visualisation has been primarily restricted to small-scale, hand generated visualisations. However, this thesis shows the viability of using animation within software visualisation with automated visualisations on a large scale. In addition, evaluation of the visualisations has shown that they are suitable for showing the changes that have occurred in the software over a period of time, and subsequently how the software has evolved. These visualisations are therefore suitable for use by developers and managers involved with open source software. In addition, they also provide a basis for future research in evolutionary visualisations, software evolution and open source development

    Taking time to understand: articulating relationships between technologies and organizations

    Get PDF
    Dynamic relationships between technologies and organizations are investigated through research on digital visualization technologies and their use in the construction sector. Theoretical work highlights mutual adaptation between technologies and organizations but does not explain instances of sustained, sudden, or increasing maladaptation. By focusing on the technological field, I draw attention to hierarchical structuring around inter-dependent levels of technology; technological priorities of diverse groups; power asymmetries and disjunctures between contexts of development and use. For complex technologies, such as digital technologies, I argue these field-level features explain why organizations peripheral to the field may experience difficulty using emerging technology
    corecore