2,692 research outputs found

    Pyramid: Enhancing Selectivity in Big Data Protection with Count Featurization

    Full text link
    Protecting vast quantities of data poses a daunting challenge for the growing number of organizations that collect, stockpile, and monetize it. The ability to distinguish data that is actually needed from data collected "just in case" would help these organizations to limit the latter's exposure to attack. A natural approach might be to monitor data use and retain only the working-set of in-use data in accessible storage; unused data can be evicted to a highly protected store. However, many of today's big data applications rely on machine learning (ML) workloads that are periodically retrained by accessing, and thus exposing to attack, the entire data store. Training set minimization methods, such as count featurization, are often used to limit the data needed to train ML workloads to improve performance or scalability. We present Pyramid, a limited-exposure data management system that builds upon count featurization to enhance data protection. As such, Pyramid uniquely introduces both the idea and proof-of-concept for leveraging training set minimization methods to instill rigor and selectivity into big data management. We integrated Pyramid into Spark Velox, a framework for ML-based targeting and personalization. We evaluate it on three applications and show that Pyramid approaches state-of-the-art models while training on less than 1% of the raw data

    EEG Classification based on Image Configuration in Social Anxiety Disorder

    Get PDF
    The problem of detecting the presence of Social Anxiety Disorder (SAD) using Electroencephalography (EEG) for classification has seen limited study and is addressed with a new approach that seeks to exploit the knowledge of EEG sensor spatial configuration. Two classification models, one which ignores the configuration (model 1) and one that exploits it with different interpolation methods (model 2), are studied. Performance of these two models is examined for analyzing 34 EEG data channels each consisting of five frequency bands and further decomposed with a filter bank. The data are collected from 64 subjects consisting of healthy controls and patients with SAD. Validity of our hypothesis that model 2 will significantly outperform model 1 is borne out in the results, with accuracy 66--7%7\% higher for model 2 for each machine learning algorithm we investigated. Convolutional Neural Networks (CNN) were found to provide much better performance than SVM and kNNs

    Towards End-to-End Acoustic Localization using Deep Learning: from Audio Signal to Source Position Coordinates

    Full text link
    This paper presents a novel approach for indoor acoustic source localization using microphone arrays and based on a Convolutional Neural Network (CNN). The proposed solution is, to the best of our knowledge, the first published work in which the CNN is designed to directly estimate the three dimensional position of an acoustic source, using the raw audio signal as the input information avoiding the use of hand crafted audio features. Given the limited amount of available localization data, we propose in this paper a training strategy based on two steps. We first train our network using semi-synthetic data, generated from close talk speech recordings, and where we simulate the time delays and distortion suffered in the signal that propagates from the source to the array of microphones. We then fine tune this network using a small amount of real data. Our experimental results show that this strategy is able to produce networks that significantly improve existing localization methods based on \textit{SRP-PHAT} strategies. In addition, our experiments show that our CNN method exhibits better resistance against varying gender of the speaker and different window sizes compared with the other methods.Comment: 18 pages, 3 figures, 8 table

    Real-time neural signal processing and low-power hardware co-design for wireless implantable brain machine interfaces

    Get PDF
    Intracortical Brain-Machine Interfaces (iBMIs) have advanced significantly over the past two decades, demonstrating their utility in various aspects, including neuroprosthetic control and communication. To increase the information transfer rate and improve the devices’ robustness and longevity, iBMI technology aims to increase channel counts to access more neural data while reducing invasiveness through miniaturisation and avoiding percutaneous connectors (wired implants). However, as the number of channels increases, the raw data bandwidth required for wireless transmission also increases becoming prohibitive, requiring efficient on-implant processing to reduce the amount of data through data compression or feature extraction. The fundamental aim of this research is to develop methods for high-performance neural spike processing co-designed within low-power hardware that is scaleable for real-time wireless BMI applications. The specific original contributions include the following: Firstly, a new method has been developed for hardware-efficient spike detection, which achieves state-of-the-art spike detection performance and significantly reduces the hardware complexity. Secondly, a novel thresholding mechanism for spike detection has been introduced. By incorporating firing rate information as a key determinant in establishing the spike detection threshold, we have improved the adaptiveness of spike detection. This eventually allows the spike detection to overcome the signal degradation that arises due to scar tissue growth around the recording site, thereby ensuring enduringly stable spike detection results. The long-term decoding performance, as a consequence, has also been improved notably. Thirdly, the relationship between spike detection performance and neural decoding accuracy has been investigated to be nonlinear, offering new opportunities for further reducing transmission bandwidth by at least 30% with minor decoding performance degradation. In summary, this thesis presents a journey toward designing ultra-hardware-efficient spike detection algorithms and applying them to reduce the data bandwidth and improve neural decoding performance. The software-hardware co-design approach is essential for the next generation of wireless brain-machine interfaces with increased channel counts and a highly constrained hardware budget. The fundamental aim of this research is to develop methods for high-performance neural spike processing co-designed within low-power hardware that is scaleable for real-time wireless BMI applications. The specific original contributions include the following: Firstly, a new method has been developed for hardware-efficient spike detection, which achieves state-of-the-art spike detection performance and significantly reduces the hardware complexity. Secondly, a novel thresholding mechanism for spike detection has been introduced. By incorporating firing rate information as a key determinant in establishing the spike detection threshold, we have improved the adaptiveness of spike detection. This eventually allows the spike detection to overcome the signal degradation that arises due to scar tissue growth around the recording site, thereby ensuring enduringly stable spike detection results. The long-term decoding performance, as a consequence, has also been improved notably. Thirdly, the relationship between spike detection performance and neural decoding accuracy has been investigated to be nonlinear, offering new opportunities for further reducing transmission bandwidth by at least 30\% with only minor decoding performance degradation. In summary, this thesis presents a journey toward designing ultra-hardware-efficient spike detection algorithms and applying them to reduce the data bandwidth and improve neural decoding performance. The software-hardware co-design approach is essential for the next generation of wireless brain-machine interfaces with increased channel counts and a highly constrained hardware budget.Open Acces
    • …
    corecore