1,142 research outputs found

    Misalignment diagnosis of a planetary gearbox based on vibration analysis

    Get PDF
    As a critical power transmission system, planetary gearbox is widely used in many industrial important machines such as wind turbines, aircraft turbine engines, helicopters. Early fault detection and diagnosis of the gearbox will help to prevent unexpected breakdowns of this important equip-ment. Misalignment is one of the major operating problems in the planetary gearbox which may be caused by inadequate system integration, variable operating conditions and differences of elastic deformations in the system. In this paper, the effect of varying degrees of installation misalignment of planetary gearbox are investigated based on vibration measurements using spectrum analysis and modulation signal bispectrum (MSB) analysis. It has shown that the misalignment can be diagnosed in the low frequency range in which the adverse effect due to co-occurrence of amplitude modula-tion and frequency modulation (AM-FM) effect is low compared with the components around meshing frequencies. Moreover, MSB produces a more accurate and reliable diagnosis in that it gives correct indication of the fault severity and location for all operating conditions. In contrast, spectrum can produce correct results for some of the operating conditions. Keywords: Planetary gearbox, Condition Monitoring, Misalignment, Modulation signal bispectrum

    Wind turbine condition monitoring : technical and commercial challenges.

    Get PDF
    Deployment of larger scale wind turbine systems, particularly offshore, requires more organized operation and maintenance strategies to ensure systems are safe, profitable and cost-effective. Among existing maintenance strategies, reliability centred maintenance is regarded as best for offshore wind turbines, delivering corrective and proactive (i.e. preventive and predictive) maintenance techniques enabling wind turbines to achieve high availability and low cost of energy. Reliability centred maintenance analysis may demonstrate that an accurate and reliable condition monitoring system is one method to increase availability and decrease the cost of energy from wind. In recent years, efforts have been made to develop efficient and cost-effective condition monitoring techniques for wind turbines. A number of commercial wind turbine monitoring systems are available in the market, most based on existing techniques from other rotating machine industries. Other wind turbine condition monitoring reviews have been published but have not addressed the technical and commercial challenges, in particular, reliability and value for money. The purpose of this paper is to fill this gap and present the wind industry with a detailed analysis of the current practical challenges with existing wind turbine condition monitoring technology

    Diagnosis of Combination Faults in a Planetary Gearbox using a Modulation Signal Bispectrum based Sideband Estimator

    Get PDF
    This paper presents a novel method for diagnosing combination faults in planetary gearboxes. Vibration signals measured on the gearbox housing exhibit complicated characteristics because of multiple modulations of concurrent excitation sources, signal paths and noise. To separate these modulations accurately, a modulation signal bispectrum based sideband estimator (MSB-SE) developed recently is used to achieve a sparse representation for the complicated signal contents, which allows effective enhancement of various sidebands for accurate diagnostic information. Applying the proposed method to diagnose an industrial planetary gearbox which coexists both bearing faults and gear faults shows that the different severities of the faults can be separated reliably under different load conditions, confirming the superior performance of this MSB-SE based diagnosis scheme

    Feature Extraction Using Discrete Wavelet Transform for Gear Fault Diagnosis of Wind Turbine Gearbox

    Get PDF
    Vibration diagnosis is one of the most common techniques in condition evaluation of wind turbine equipped with gearbox. On the other side, gearbox is one of the key components of wind turbine drivetrain. Due to the stochastic operation of wind turbines, the gearbox shaft rotating speed changes with high percentage, which limits the application of traditional vibration signal processing techniques, such as fast Fourier transform. This paper investigates a new approach for wind turbine high speed shaft gear fault diagnosis using discrete wavelet transform and time synchronous averaging. First, the vibration signals are decomposed into a series of subbands signals with the use of a multiresolution analytical property of the discrete wavelet transform. Then, 22 condition indicators are extracted from the TSA signal, residual signal, and difference signal. Through the case study analysis, a new approach reveals the most relevant condition indicators based on vibrations that can be used for high speed shaft gear spalling fault diagnosis and their tracking abilities for fault degradation progression. It is also shown that the proposed approach enhances the gearbox fault diagnosis ability in wind turbines. The approach presented in this paper was programmed in Matlab environment using data acquired on a 2 MW wind turbine

    Detection of Natural Crack in Wind Turbine Gearbox

    Get PDF
    This document is the Accepted Manuscript version of the following article: Suliman Shanbr, Faris Elasha, Mohamed Elforjani, and Joao Teixeira, ‘Detection of natural crack in wind turbine gearbox’, Renewable Energy, vol. 118: 172-179, October 2017. Under embargo. Embargo end date: 30 October 2018. The final, published version is available online at doi: https://doi.org/10.1016/j.renene.2017.10.104. © 2017 Elsevier Ltd. This manuscript version is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.One of the most challenging scenarios in bearing diagnosis is the extraction of fault signatures from within other strong components which mask the vibration signal. Usually, the bearing vibration signals are dominated by those of other components such as gears and shafts. A good example of this scenario is the wind turbine gearbox which presents one of the most difficult bearing detection tasks. The non-stationary signal analysis is considered one of the main topics in the field of machinery fault diagnosis. In this paper, a set of signal processing techniques has been studied to investigate their feasibility for bearing fault detection in wind turbine gearbox. These techniques include statistical condition indicators, spectral kurtosis, and envelope analysis. The results of vibration analysis showed the possibility of bearing fault detection in wind turbine high-speed shafts using multiple signal processing techniques. However, among these signal processing techniques, spectral kurtosis followed by envelope analysis provides early fault detection compared to the other techniques employed. In addition, outer race bearing fault indicator provides clear indication of the crack severity and progress.Peer reviewe

    A global condition monitoring system for wind turbines

    Get PDF

    Advanced Algorithms for Automatic Wind Turbine Condition Monitoring

    Get PDF
    Reliable and efficient condition monitoring (CM) techniques play a crucial role in minimising wind turbine (WT) operations and maintenance (O&M) costs for a competitive development of wind energy, especially offshore. Although all new turbines are now fitted with some form of condition monitoring system (CMS), very few operators make use of the available monitoring information for maintenance purposes because of the volume and the complexity of the data. This Thesis is concerned with the development of advanced automatic fault detection techniques so that high on-line diagnostic accuracy for important WT drive train mechanical and electrical CM signals is achieved. Experimental work on small scale WT test rigs is described. Seeded fault tests were performed to investigate gear tooth damage, rotor electrical asymmetry and generator bearing failures. Test rig data were processed by using commercial WT CMSs. Based on the experimental evidence, three algorithms were proposed to aid in the automatic damage detection and diagnosis during WT non-stationary load and speed operating conditions. Uncertainty involved in analysing CM signals with field fitted equipment was reduced, and enhanced detection sensitivity was achieved, by identifying and collating characteristic fault frequencies in CM signals which could be tracked as the WT speed varies. The performance of the gearbox algorithm was validated against datasets of a full-size WT gearbox, that had sustained gear damage, from the National Renewable Energy Laboratory (NREL) WT Gearbox Condition Monitoring Round Robin project. The fault detection sensitivity of the proposed algorithms was assessed and quantified leading to conclusions about their applicability to operating WTs

    Vestas V90-3MW Wind Turbine Gearbox Health Assessment Using a Vibration-Based Condition Monitoring System

    Get PDF
    Reliable monitoring for the early fault diagnosis of gearbox faults is of great concern for the wind industry.This paper presents a novel approach for health condition monitoring (CM) and fault diagnosis in wind turbine gearboxes using vibration analysis. This methodology is based on amachine learning algorithm that generates a baseline for the identification of deviations fromthe normal operation conditions of the turbine and the intrinsic characteristic-scale decomposition (ICD) method for fault type recognition. Outliers picked up during the baseline stage are decomposed by the ICD method to obtain the product components which reveal the fault information.The new methodology proposed for gear and bearing defect identification was validated by laboratory and field trials, comparing well with the methods reviewed in the literature
    • 

    corecore