6,710 research outputs found

    NEW APPROACHES FOR VERY SHORT-TERM STEADY-STATE ANALYSIS OF AN ELECTRICAL DISTRIBUTION SYSTEM WITH WIND FARMS

    Get PDF
    Distribution networks are undergoing radical changes due to the high level of penetration of dispersed generation. Dispersed generation systems require particular attention due to their incorporation of uncertain energy sources, such as wind farms, and due to the impacts that such sources have on the planning and operation of distribution networks. In particular, the foreseeable, extensive use of wind turbine generator units in the future requires that distribution system engineers properly account for their impacts on the system. Many new technical considerations must be addressed, including protection coordination, steady-state analysis, and power quality issues. This paper deals with the very short-term, steady-state analysis of a distribution system with wind farms, for which the time horizon of interest ranges from one hour to a few hours ahead. Several wind-forecasting methods are presented in order to obtain reliable input data for the steady-state analysis. Both deterministic and probabilistic methods were considered and used in performing deterministic and probabilistic load-flow analyses. Numerical applications on a 17-bus, medium-voltage, electrical distribution system with various wind farms connected at different busbars are presented and discusse

    A dynamic nonstationary spatio-temporal model for short term prediction of precipitation

    Full text link
    Precipitation is a complex physical process that varies in space and time. Predictions and interpolations at unobserved times and/or locations help to solve important problems in many areas. In this paper, we present a hierarchical Bayesian model for spatio-temporal data and apply it to obtain short term predictions of rainfall. The model incorporates physical knowledge about the underlying processes that determine rainfall, such as advection, diffusion and convection. It is based on a temporal autoregressive convolution with spatially colored and temporally white innovations. By linking the advection parameter of the convolution kernel to an external wind vector, the model is temporally nonstationary. Further, it allows for nonseparable and anisotropic covariance structures. With the help of the Voronoi tessellation, we construct a natural parametrization, that is, space as well as time resolution consistent, for data lying on irregular grid points. In the application, the statistical model combines forecasts of three other meteorological variables obtained from a numerical weather prediction model with past precipitation observations. The model is then used to predict three-hourly precipitation over 24 hours. It performs better than a separable, stationary and isotropic version, and it performs comparably to a deterministic numerical weather prediction model for precipitation and has the advantage that it quantifies prediction uncertainty.Comment: Published in at http://dx.doi.org/10.1214/12-AOAS564 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Wind energy forecasting with neural networks: a literature review

    Get PDF
    Renewable energy is intermittent by nature and to integrate this energy into the Grid while assuring safety and stability the accurate forecasting of there newable energy generation is critical. Wind Energy prediction is based on the ability to forecast wind. There are many methods for wind forecasting based on the statistical properties of the wind time series and in the integration of meteorological information, these methods are being used commercially around the world. But one family of new methods for wind power fore castingis surging based on Machine Learning Deep Learning techniques. This paper analyses the characteristics of the Wind Speed time series data and performs a literature review of recently published works of wind power forecasting using Machine Learning approaches (neural and deep learning networks), which have been published in the last few years.Peer ReviewedPostprint (published version
    corecore