5,090 research outputs found

    Fire Safety Analysis of a Railway Compartment using Computational Fluid Dynamics

    Get PDF
    Trains are considered to be the safest on-land transportation means for both passengers and cargo. Train accidents have been mainly disastrous, especially in case of fire, where the consequences are extensive loss of life and goods. The fire would generate smoke and heat which would spread quickly inside the railway compartments. Both heat and smoke are the primary reasons of casualties in a train. This study has been carried out to perform numerical analysis of fire characteristics in a railway compartment using commercial Computational Fluid Dynamics code ANSYS. Non-premixed combustion model has been used to simulate a fire scenario within a railway compartment, while Shear Stress Transport k-ω turbulence model has been used to accurately predict the hot air turbulence parameters within the compartment. The walls of the compartment have been modelled as no-slip stationary adiabatic walls, as is observed in real life conditions. Carbon dioxide concentration (CO2), temperature distribution and air flow velocity within the railway compartment has been monitored. It has been observed that the smoke above the fire source flows to both sides of the compartment. The highest temperature zone is located downstream the fire source, and gradually decreases with the increase in the distance from the fire source. It can be seen that CFD can be used as an effective tool in order to analyse the evolution of fire in railway compartments with reasonable accuracy. The paper also briefly discusses the topical reliability issues

    Wave modelling - the state of the art

    Get PDF
    This paper is the product of the wave modelling community and it tries to make a picture of the present situation in this branch of science, exploring the previous and the most recent results and looking ahead towards the solution of the problems we presently face. Both theory and applications are considered. The many faces of the subject imply separate discussions. This is reflected into the single sections, seven of them, each dealing with a specific topic, the whole providing a broad and solid overview of the present state of the art. After an introduction framing the problem and the approach we followed, we deal in sequence with the following subjects: (Section) 2, generation by wind; 3, nonlinear interactions in deep water; 4, white-capping dissipation; 5, nonlinear interactions in shallow water; 6, dissipation at the sea bottom; 7, wave propagation; 8, numerics. The two final sections, 9 and 10, summarize the present situation from a general point of view and try to look at the future developments

    Wind-sand tunnel testing of surface-mounted obstacles: Similarity requirements and a case study on a Sand Mitigation Measure

    Get PDF
    Windblown sand flow interacts with a number of surface-mounted human-built obstacles. The wind-sand flow perturbation and resulting morphodynamic response of the sand bed cannot be assessed in analytical terms. Therefore, wind-sand tunnel studies around scale physical models are often carried out. They should be driven by physical similarity theory based on dimensionless numbers referred to the whole multiphase and multiscale flow. However, similarity requirements cannot be fully satisfied under typical testing conditions and attention should be paid on the extent of the similarity relaxation. In this study, the background of wind-sand tunnel testing of surface-mounted obstacles is recalled by reviewing wind tunnel setups and similarity requirements. Then, a wind-sand tunnel campaign on a Sand Mitigation Measure is described and critically discussed. The setup dimensionless numbers are compared with statistics on those of past studies. The inescapable relaxation of similarity requirements is motivated by the test goals. The time evolution towards in-equilibrium conditions of both sand bed morphodynamics and sand transport is discussed. Finally, the results of engineering interest are described: the Sand Mitigation Measure sand trapping performance is assessed in dimensionless terms through the measurements of the incoming and outgoing sand concentration in air

    A fully Eulerian multiphase model of windblown sand coupled with morphodynamic evolution: Erosion, transport, deposition, and avalanching

    Get PDF
    Abstract Modeling unsteady windblown sand dynamics requires not only treatment of the sand present in the air as a suspended constituent of a mixture but also consideration of erosion and sedimentation phenomena and consequently of the morphodynamic evolution of the sand-bed surface, including avalanching, especially in the presence of natural or human-built obstacles, artifacts, and infrastructures. With this aim in mind, we present a comprehensive multiphase model capable of accurately simulating all the physical phenomena mentioned above, producing satisfactory results, with reasonable computational effort. As test cases, two- and three-dimensional simulations of dune evolution are reported, as is windblown sand transport over a straight vertical wall. Examples of sand transport around other obstacles are given to show the flexibility of the model and its usefulness for such engineering applications

    Scale-dependent perspectives on the geomorphology and evolution of beachdune systems

    Get PDF
    Despite widespread recognition that landforms are complex Earth systems with process-response linkages that span temporal scales from seconds to millennia and spatial scales from sand grains to landscapes, research that integrates knowledge across these scales is fairly uncommon. As a result, understanding of geomorphic systems is often scale-constrained due to a host of methodological, logistical, and theoretical factors that limit the scope of how Earth scientists study landforms and broader landscapes. This paper reviews recent advances in understanding of the geomorphology of beach-dune systems derived from over a decade of collaborative research from Prince Edward Island (PEI), Canada. A comprehensive summary of key findings is provided from short-term experiments embedded within a decade-long monitoring program and a multi-decadal reconstruction of coastal landscape change. Specific attention is paid to the challenges of scale integration and the contextual limitations research at specific spatial and/or temporal scales imposes. A conceptual framework is presented that integrates across key scales of investigation in geomorphology and is grounded in classic ideas in Earth surface sciences on the effectiveness of formative events at different scales. The paper uses this framework to organize the review of this body of research in a 'scale aware' way and, thereby, identifies many new advances in knowledge on the form and function of subaerial beach-dune systems. Finally, the paper offers a synopsis of how greater understanding of the complexities at different scales can be used to inform the development of predictive models, especially those at a temporal scale of decades to centuries, which are most relevant to coastal management issues. Models at this (landform) scale require an understanding of controls that exist at both ‘landscape’ and ‘plot’ scales. Landscape scale controls such as sea level change, regional climate, and the underlying geologic framework essentially provide bounding conditions for independent variables such as winds, waves, water levels, and littoral sediment supply. Similarly, an holistic understanding of the range of processes, feedbacks, and linkages at the finer plot scale is required to inform and verify the assumptions that underly the physical modelling of beach-dune interaction at the landform scale
    • …
    corecore