15,732 research outputs found

    Wind speed forecasting at different time scales: a non parametric approach

    Full text link
    The prediction of wind speed is one of the most important aspects when dealing with renewable energy. In this paper we show a new nonparametric model, based on semi-Markov chains, to predict wind speed. Particularly we use an indexed semi-Markov model, that reproduces accurately the statistical behavior of wind speed, to forecast wind speed one step ahead for different time scales and for very long time horizon maintaining the goodness of prediction. In order to check the main features of the model we show, as indicator of goodness, the root mean square error between real data and predicted ones and we compare our forecasting results with those of a persistence model

    Go with the flow: Recurrent networks for wind time series multi-step forecasting

    Get PDF
    One of the ways of reducing the effects of Climate Change is to rely on renewable energy sources. Their intermittent nature makes necessary to obtain a mid-long term accurate forecasting. Wind Energy prediction is based on the ability to forecast wind speed. This has been a problem approached using different methods based on the statistical properties of the wind time series. Wind Time series are non-linear and non-stationary, making their forecasting very challenging. Deep neural networks have shown their success recently for problems involving sequences with non-linear behavior. In this work, we perform experiments comparing the capability of different neural network architectures for multi-step forecasting obtaining a 12 hours ahead prediction using data from the National Renewable Energy Laboratory's WIND datasetPeer ReviewedPostprint (published version

    An Integrated Multi-Time-Scale Modeling for Solar Irradiance Forecasting Using Deep Learning

    Full text link
    For short-term solar irradiance forecasting, the traditional point forecasting methods are rendered less useful due to the non-stationary characteristic of solar power. The amount of operating reserves required to maintain reliable operation of the electric grid rises due to the variability of solar energy. The higher the uncertainty in the generation, the greater the operating-reserve requirements, which translates to an increased cost of operation. In this research work, we propose a unified architecture for multi-time-scale predictions for intra-day solar irradiance forecasting using recurrent neural networks (RNN) and long-short-term memory networks (LSTMs). This paper also lays out a framework for extending this modeling approach to intra-hour forecasting horizons thus, making it a multi-time-horizon forecasting approach, capable of predicting intra-hour as well as intra-day solar irradiance. We develop an end-to-end pipeline to effectuate the proposed architecture. The performance of the prediction model is tested and validated by the methodical implementation. The robustness of the approach is demonstrated with case studies conducted for geographically scattered sites across the United States. The predictions demonstrate that our proposed unified architecture-based approach is effective for multi-time-scale solar forecasts and achieves a lower root-mean-square prediction error when benchmarked against the best-performing methods documented in the literature that use separate models for each time-scale during the day. Our proposed method results in a 71.5% reduction in the mean RMSE averaged across all the test sites compared to the ML-based best-performing method reported in the literature. Additionally, the proposed method enables multi-time-horizon forecasts with real-time inputs, which have a significant potential for practical industry applications in the evolving grid.Comment: 19 pages, 12 figures, 3 tables, under review for journal submissio

    Air Quality Prediction in Smart Cities Using Machine Learning Technologies Based on Sensor Data: A Review

    Get PDF
    The influence of machine learning technologies is rapidly increasing and penetrating almost in every field, and air pollution prediction is not being excluded from those fields. This paper covers the revision of the studies related to air pollution prediction using machine learning algorithms based on sensor data in the context of smart cities. Using the most popular databases and executing the corresponding filtration, the most relevant papers were selected. After thorough reviewing those papers, the main features were extracted, which served as a base to link and compare them to each other. As a result, we can conclude that: (1) instead of using simple machine learning techniques, currently, the authors apply advanced and sophisticated techniques, (2) China was the leading country in terms of a case study, (3) Particulate matter with diameter equal to 2.5 micrometers was the main prediction target, (4) in 41% of the publications the authors carried out the prediction for the next day, (5) 66% of the studies used data had an hourly rate, (6) 49% of the papers used open data and since 2016 it had a tendency to increase, and (7) for efficient air quality prediction it is important to consider the external factors such as weather conditions, spatial characteristics, and temporal features
    corecore