98,592 research outputs found

    The future of professional work: will you be replaced, or will you be sitting next to a robot?

    Get PDF
    There has been much talk about the use of robotics within professional functions such as finance, HR, procurement, etc especially when change is driven by the shared services model. This article explores the often overlapping concepts of work automation and robotic technology before considering the possibilities for transforming the way professional work might be carried out in future

    Why there will never be a robot-entrepreneur and why it’s important

    Get PDF
    Robots will never feel complex human emotions that help stop dangerous processes, writes François-Xavier de Vaujan

    Humans' Perception of a Robot Moving Using a Slow in and Slow Out Velocity Profile

    Get PDF
    © 2019 IEEE - All rights reservedHumans need to understand and trust the robots they are working with. We hypothesize that how a robot moves can impact people’s perception and their trust. We present a methodology for a study to explore people’s perception of a robot using the animation principle of slow in, slow out—to change the robot’s velocity profile versus a robot moving using a linear velocity profile. Study participants will interact with the robot within a home context to complete a task while the robot moves around the house. The participants’ perceptions of the robot will be recorded using the Godspeed Questionnaire. A pilot study shows that it is possible to notice the difference between the linear and the slow in, slow out velocity profiles, so the full experiment planned with participants will allow us to compare their perceptions based on the two observable behaviors.Final Accepted Versio

    A Data-driven Approach Towards Human-robot Collaborative Problem Solving in a Shared Space

    Full text link
    We are developing a system for human-robot communication that enables people to communicate with robots in a natural way and is focused on solving problems in a shared space. Our strategy for developing this system is fundamentally data-driven: we use data from multiple input sources and train key components with various machine learning techniques. We developed a web application that is collecting data on how two humans communicate to accomplish a task, as well as a mobile laboratory that is instrumented to collect data on how two humans communicate to accomplish a task in a physically shared space. The data from these systems will be used to train and fine-tune the second stage of our system, in which the robot will be simulated through software. A physical robot will be used in the final stage of our project. We describe these instruments, a test-suite and performance metrics designed to evaluate and automate the data gathering process as well as evaluate an initial data set.Comment: 2017 AAAI Fall Symposium on Natural Communication for Human-Robot Collaboratio

    Enabling Robots to Communicate their Objectives

    Full text link
    The overarching goal of this work is to efficiently enable end-users to correctly anticipate a robot's behavior in novel situations. Since a robot's behavior is often a direct result of its underlying objective function, our insight is that end-users need to have an accurate mental model of this objective function in order to understand and predict what the robot will do. While people naturally develop such a mental model over time through observing the robot act, this familiarization process may be lengthy. Our approach reduces this time by having the robot model how people infer objectives from observed behavior, and then it selects those behaviors that are maximally informative. The problem of computing a posterior over objectives from observed behavior is known as Inverse Reinforcement Learning (IRL), and has been applied to robots learning human objectives. We consider the problem where the roles of human and robot are swapped. Our main contribution is to recognize that unlike robots, humans will not be exact in their IRL inference. We thus introduce two factors to define candidate approximate-inference models for human learning in this setting, and analyze them in a user study in the autonomous driving domain. We show that certain approximate-inference models lead to the robot generating example behaviors that better enable users to anticipate what it will do in novel situations. Our results also suggest, however, that additional research is needed in modeling how humans extrapolate from examples of robot behavior.Comment: RSS 201

    Efficient Model Learning for Human-Robot Collaborative Tasks

    Get PDF
    We present a framework for learning human user models from joint-action demonstrations that enables the robot to compute a robust policy for a collaborative task with a human. The learning takes place completely automatically, without any human intervention. First, we describe the clustering of demonstrated action sequences into different human types using an unsupervised learning algorithm. These demonstrated sequences are also used by the robot to learn a reward function that is representative for each type, through the employment of an inverse reinforcement learning algorithm. The learned model is then used as part of a Mixed Observability Markov Decision Process formulation, wherein the human type is a partially observable variable. With this framework, we can infer, either offline or online, the human type of a new user that was not included in the training set, and can compute a policy for the robot that will be aligned to the preference of this new user and will be robust to deviations of the human actions from prior demonstrations. Finally we validate the approach using data collected in human subject experiments, and conduct proof-of-concept demonstrations in which a person performs a collaborative task with a small industrial robot
    • …
    corecore