519 research outputs found

    Internet Predictions

    Get PDF
    More than a dozen leading experts give their opinions on where the Internet is headed and where it will be in the next decade in terms of technology, policy, and applications. They cover topics ranging from the Internet of Things to climate change to the digital storage of the future. A summary of the articles is available in the Web extras section

    Understanding the determinants of Cloud Computing adoption in Saudi healthcare organisations

    Get PDF
    Cloud Computing is an evolving information technology paradigm that impacts many sectors in many countries. Although Cloud Computing is an emerging technology there is little in the literature concerning its application in the Saudi healthcare sector. This paper examines and identifies the factors that will influence the adoption of Cloud Computing in Saudi healthcare organisations. The study integrates the TOE (Technology–Organization–Environment) framework with the Information System Strategic Triangle (IS Triangle) and the HOT-fit (Human–Organization–Technology) model to provide a holistic evaluation of the determinants of Cloud Computing adoption in healthcare organisations. Of the five perspectives examined in this study, the Business perspective was found to be the most important followed by the Technology, Organisational and Environmental perspectives and finally the Human perspective. The findings of the study showed that the five most important factors influencing the adoption of Cloud Computing in this context are soft financial analysis, relative advantage, hard financial analysis, attitude toward change and pressure from partners in the business ecosystem. This study identifies the critical factors for both practitioners and academics that influence Cloud Computing adoption decision-making in Saudi healthcare

    epcAware: a game-based, energy, performance and cost efficient resource management technique for multi-access edge computing

    Get PDF
    The Internet of Things (IoT) is producing an extraordinary volume of data daily, and it is possible that the data may become useless while on its way to the cloud for analysis, due to longer distances and delays. Fog/edge computing is a new model for analyzing and acting on time-sensitive data (real-time applications) at the network edge, adjacent to where it is produced. The model sends only selected data to the cloud for analysis and long-term storage. Furthermore, cloud services provided by large companies such as Google, can also be localized to minimize the response time and increase service agility. This could be accomplished through deploying small-scale datacenters (reffered to by name as cloudlets) where essential, closer to customers (IoT devices) and connected to a centrealised cloud through networks - which form a multi-access edge cloud (MEC). The MEC setup involves three different parties, i.e. service providers (IaaS), application providers (SaaS), network providers (NaaS); which might have different goals, therefore, making resource management a defïŹcult job. In the literature, various resource management techniques have been suggested in the context of what kind of services should they host and how the available resources should be allocated to customers’ applications, particularly, if mobility is involved. However, the existing literature considers the resource management problem with respect to a single party. In this paper, we assume resource management with respect to all three parties i.e. IaaS, SaaS, NaaS; and suggest a game theoritic resource management technique that minimises infrastructure energy consumption and costs while ensuring applications performance. Our empirical evaluation, using real workload traces from Google’s cluster, suggests that our approach could reduce up to 11.95% energy consumption, and approximately 17.86% user costs with negligible loss in performance. Moreover, IaaS can reduce up to 20.27% energy bills and NaaS can increase their costs savings up to 18.52% as compared to other methods

    Network Service Orchestration: A Survey

    Full text link
    Business models of network service providers are undergoing an evolving transformation fueled by vertical customer demands and technological advances such as 5G, Software Defined Networking~(SDN), and Network Function Virtualization~(NFV). Emerging scenarios call for agile network services consuming network, storage, and compute resources across heterogeneous infrastructures and administrative domains. Coordinating resource control and service creation across interconnected domains and diverse technologies becomes a grand challenge. Research and development efforts are being devoted to enabling orchestration processes to automate, coordinate, and manage the deployment and operation of network services. In this survey, we delve into the topic of Network Service Orchestration~(NSO) by reviewing the historical background, relevant research projects, enabling technologies, and standardization activities. We define key concepts and propose a taxonomy of NSO approaches and solutions to pave the way towards a common understanding of the various ongoing efforts around the realization of diverse NSO application scenarios. Based on the analysis of the state of affairs, we present a series of open challenges and research opportunities, altogether contributing to a timely and comprehensive survey on the vibrant and strategic topic of network service orchestration.Comment: Accepted for publication at Computer Communications Journa

    The Internet Ecosystem: The Potential for Discrimination

    Get PDF
    Symposium: Rough Consensus and Running Code: Integrating Engineering Principles into Internet Policy Debates, held at the University of Pennsylvania\u27s Center for Technology Innovation and Competition on May 6-7, 2010. This Article explores how the emerging Internet architecture of cloud computing, content distribution networks, private peering and data-center services can simultaneously foster a perception of unfair network access while at the same time enabling significant competition for services, content, and innovation. A key enabler of these changes is the emergence of technologies that lower the barrier for entry in developing and deploying new services. Another is the design of successful Internet applications, which already accommodate the variation in service afforded by the current Internet. Regulators should be aware of the potential for anti-competitive practices in this broader Internet Ecosystem, but should carefully consider the effects of regulation on that ecosystem

    PHYRON: cognitive computing for the creation of an innovative Intelligence Experience Center

    Full text link
    [EN] This research presents the results of a project called “PHYRON: Cognitive Computing for the creation of an innovative Intelligence Experience Center”, funded by the Basque Government (Economic Development, Sustainability and Environment Department). The project started in April 2019 and it will end in December 2021. Its main objective was to arrange an industrial research about cognitive computing. The main aim was the application of these systems for the development of an Intelligent Experience Center (IExC) to facilitate:  i) enrichment of processes, products and services, in general client experiences, ii) automatic generation of technical predictions related to the product and the client behaviour through the exploitation of acquired knowledge, and iii) rationalization and automation of the processes that are involved in the after sale services both at technical and management level. The technological outcome presented in this paper is built using cognitive engines to enable learning from the client experience, and predictive models to anticipate client necessities.We would like to thank the Basque Government for their support in the development of this project. Special thanks to the Economic Development, Sustainability and Environment Department.Ruiz, M.; Rodriguez, JJ.; Erlaiz, G.; Olibares, I. (2021). PHYRON: cognitive computing for the creation of an innovative Intelligence Experience Center. International Journal of Production Management and Engineering. 9(2):103-112. https://doi.org/10.4995/ijpme.2021.15300OJS10311292Agrawal, A., Gans, J., & Goldfarb, A. (2017). What to expect from artificial intelligence. MIT Sloan Management Review. https://doi.org/10.3386/w24690Biecek, P. (2018). DALEX: explainers for complex predictive models in R. The Journal of Machine Learning Re-search, 19(1), 3245-3249.Bond, A. H., & Gasser, L. (Eds.). (2014). Readings in distributed artificial intelligence. Morgan Kaufmann.Bringsjord, S., & Schimanski, B. (2003, August). What is artificial intelligence? Psychometric AI as an answer. In IJCAI (pp. 887-893).Engelmore, R. S. (1987). Artificial intelligence and knowledge based systems: origins, methods and opportunities for NDE. In Review of Progress in Quantitative Nondestructive Evaluation (pp. 1-20). Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1893-4_1Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning.Hagberg, J., Sundstrom, M., & Egels-ZandĂ©n, N. (2016). The digitalization of retailing: an exploratory frame-work. International Journal of Retail & Distribution Management. https://doi.org/10.1108/IJRDM-09-2015-0140High, R. (2012). The era of cognitive systems: An inside look at IBM Watson and how it works. IBM Corporation, Redbooks, 1-16.Hollnagel, E., & Woods, D. D. (1983). Cognitive systems engineering: New wine in new bottles. International journal of man-machine studies, 18(6), 583-600. https://doi.org/10.1016/S0020-7373(83)80034-0Jin, X., Wah, B. W., Cheng, X., & Wang, Y. (2015). Significance and challenges of big data research. Big Data Research, 2(2), 59-64. https://doi.org/10.1016/j.bdr.2015.01.006Katal, A., Wazid, M., & Goudar, R. H. (2013, August). Big data: issues, challenges, tools and good practices. In 2013 Sixth international conference on contemporary computing (IC3) (pp. 404-409). IEEE. https://doi.org/10.1109/IC3.2013.6612229Kuhn, M. (2008). Building predictive models in R using the caret package. J Stat Softw, 28(5), 1-26. https://doi.org/10.18637/jss.v028.i05Forrester (2017): "Predictions 2018: The Honeymoon For AI is Over".LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539Mousannif, H., Sabah, H., Douiji, Y., & Sayad, Y. O. (2014, August). From big data to big projects: a step-by-step roadmap. In 2014 International Conference on Future Internet of Things and Cloud (pp. 373-378). IEEE. https://doi.org/10.1109/FiCloud.2014.66PwC (2017). UK Economic Outlook. Recuperado de http:// www.pwc.co.uk/economicsPWc, (2018): "Bots, Machine Learning, Servicios Cognitivos. Realidad y perspectivas de la Inteligencia Artificial en España, 2018".Rusk, N. (2016). Deep learning. Nature Methods, 13(1), 35-35. https://doi.org/10.1038/nmeth.3707Steels, L. (1993). The artificial life roots of artificial intelligence. Artificial life, 1(1_2), 75-110. https://doi.org/10.1162/artl.1993.1.1_2.75Steyerberg, E. W., Harrell Jr, F. E., Borsboom, G. J., Eijkemans, M. J. C., Vergouwe, Y., & Habbema, J. D. F. (2001). Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. Journal of clinical epidemiology, 54(8), 774-781. https://doi.org/10.1016/S0895-4356(01)00341-9Strong, A. I. (2016). Applications of artificial intelligence & associated technologies. Science [ETEBMS-2016], 5(6).Wu, X., Zhu, X., Wu, G. Q., & Ding, W. (2013). Data mining with big data. IEEE transactions on knowledge and data engineering, 26(1), 97-107. https://doi.org/10.1109/TKDE.2013.109Zhang, X. D. (2020). Machine learning. In A Matrix Algebra Approach to Artificial Intelligence (pp. 223-440). Springer, Singapore. https://doi.org/10.1007/978-981-15-2770-8_

    A systematic review of crime facilitated by the consumer Internet of Things

    Get PDF
    The nature of crime is changing — estimates suggest that at least half of all crime is now committed online. Once everyday objects (e.g. televisions, baby monitors, door locks) that are now internet connected, collectively referred to as the Internet of Things (IoT), have the potential to transform society, but this increase in connectivity may generate new crime opportunities. Here, we conducted a systematic review to inform understanding of these risks. We identify a number of high-level mechanisms through which offenders may exploit the consumer IoT including profiling, physical access control and the control of device audio/visual outputs. The types of crimes identified that could be facilitated by the IoT were wide ranging and included burglary, stalking, and sex crimes through to state level crimes including political subjugation. Our review suggests that the IoT presents substantial new opportunities for offending and intervention is needed now to prevent an IoT crime harvest
    • 

    corecore