13 research outputs found

    Nouvelles Topologies des diviseurs de puissance, balun et déphaseurs en bandes RF et millimétiques, apport des lignes à ondes lentes

    Get PDF
    L objectif de cette thèse a été premièrement de réaliser des dispositifs passifs intégrés à base de lignes à onde lentes nommées S-CPW (pour Slow-wave CoPlanar Waveguide ) aux fréquences millimétriques. Plusieurs technologies CMOS ou BiCMOS ont été utilisées: CMOS 65 nm et 28 nm ainsi que BiCMOS 55 nm. Deux baluns, le premier basé sur une topologie de rat-race et le second basé sur un diviseur de puissance de Wilkinson modifié, ainsi qu un inverseur de phase, ont été réalisés et mesurés dans la technologie CMOS 65 nm. Les résultats expérimentaux obtenus se situent à l état de l art en termes de performances électriques. Un coupler hybride et un diviseur de puissance avec des sorties en phase sans isolation ont été conçus en technologie CMOS 28 nm. Les simulations montrent de très bonnes performances pour des dispositifs compacts. Les circuits sont en cours de fabrication et pourront très bientôt être caractérisés. Ensuite, une nouvelle topologie de diviseurs de puissance, avec sorties en phase et isolé a été développée, offrant une grande flexibilité et compacité en comparaison des diviseurs de puissance traditionnels. Cette topologie est parfaitement adaptée pour les technologies silicium. Comme preuve de concept, deux diviseurs de puissance avec des caractéristiques différentes ont été réalisés en technologie PCB microruban à la fréquence de 2.45 GHz. Un composent a été conçu à 60 GHz en technologie BiCMOS 55 nm utilisant des lignes S CPW. Les simulations prouvent que le dispositif est faibles pertes, adapté et isolé. Les circuits sont également en cours de fabrication. Enfin, deux topologies de reflection type phase shifter ont été développées, la première dans la bande RF et la seconde aux fréquences millimétrique. Pour la bande RF, le déphasage atteint plus de 360 avec une figure de mérite très élevée en comparaison avec l état de l art. En ce qui concerne le déphaseur dans la bande millimétrique, la simulation montre un déphasage de 341 avec également une figure de mérite élevée.The first purpose of this work was the use of slow-wave coplanar waveguides (S CPW) to achieve various passive components with the aim to show their great potential and interest at millimetre-waves. Several CMOS or BiCMOS technologies were used: CMOS 65 nm and 28 nm, and BiCMOS 55 nm. Two baluns, one based on a rat-race topology and the other based on a modified Wilkinson power divider, and a phase inverter, were achieved and measured in a 65 nm CMOS technology. State-of-the-art results were achieved. A branch-line coupler and an in phase power divider without isolation were designed in a 28 nm CMOS technology. Really good performances are expected for these compact devices being yet under fabrication. Then, a new topology of in phase and isolated power divider was developed, leading to more flexibility and compactness, well suited to millimetre-wave frequencies. Two power dividers with different characteristics were realized in a PCB technology at 2.45 GHz by using microstrip lines, as a proof-of-concept. After that, a power divider was designed at the working frequency of 60 GHz in the 55 nm BiCMOS technology with S CPWs. The simulation results showed a low loss, full-matched and isolated component, which is also under fabrication and will be characterized as soon as possible. Finally, two new topologies of reflection type phase shifters were presented, one for the RF band and one for the millimetre-wave one. For the one in RF band, the phase shift can reach more than 360 with a great figure-of-merit as compared to the state-of-the-art. Concerning the phase shifter in the millimetre-wave band, the simulation results show a phase shift of 341 with also a high figure-of-merit.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Wireless wire - ultra-low-power and high-data-rate wireless communication systems

    Get PDF
    With the rapid development of communication technologies, wireless personal-area communication systems gain momentum and become increasingly important. When the market gets gradually saturated and the technology becomes much more mature, new demands on higher throughput push the wireless communication further into the high-frequency and high-data-rate direction. For example, in the IEEE 802.15.3c standard, a 60-GHz physical layer is specified, which occupies the unlicensed 57 to 64 GHz band and supports gigabit links for applications such as wireless downloading and data streaming. Along with the progress, however, both wireless protocols and physical systems and devices start to become very complex. Due to the limited cut-off frequency of the technology and high parasitic and noise levels at high frequency bands, the power consumption of these systems, especially of the RF front-ends, increases significantly. The reason behind this is that RF performance does not scale with technology at the same rate as digital baseband circuits. Based on the challenges encountered, the wireless-wire system is proposed for the millimeter wave high-data-rate communication. In this system, beamsteering directional communication front-ends are used, which confine the RF power within a narrow beam and increase the level of the equivalent isotropic radiation power by a factor equal to the number of antenna elements. Since extra gain is obtained from the antenna beamsteering, less front-end gain is required, which will reduce the power consumption accordingly. Besides, the narrow beam also reduces the interference level to other nodes. In order to minimize the system average power consumption, an ultra-low power asynchronous duty-cycled wake-up receiver is added to listen to the channel and control the communication modes. The main receiver is switched on by the wake-up receiver only when the communication is identified while in other cases it will always be in sleep mode with virtually no power consumed. Before transmitting the payload, the event-triggered transmitter will send a wake-up beacon to the wake-up receiver. As long as the wake-up beacon is longer than one cycle of the wake-up receiver, it can be captured and identified. Furthermore, by adopting a frequency-sweeping injection locking oscillator, the wake-up receiver is able to achieve good sensitivity, low latency and wide bandwidth simultaneously. In this way, high-data-rate communication can be achieved with ultra-low average power consumption. System power optimization is achieved by optimizing the antenna number, data rate, modulation scheme, transceiver architecture, and transceiver circuitries with regards to particular application scenarios. Cross-layer power optimization is performed as well. In order to verify the most critical elements of this new approach, a W-band injection-locked oscillator and the wake-up receiver have been designed and implemented in standard TSMC 65-nm CMOS technology. It can be seen from the measurement results that the wake-up receiver is able to achieve about -60 dBm sensitivity, 10 mW peak power consumption and 8.5 µs worst-case latency simultaneously. When applying a duty-cycling scheme, the average power of the wake-up receiver becomes lower than 10 µW if the event frequency is 1000 times/day, which matches battery-based or energy harvesting-based wireless applications. A 4-path phased-array main receiver is simulated working with 1 Gbps data rate and on-off-keying modulation. The average power consumption is 10 µW with 10 Gb communication data per day

    Distributed Transformers for Broadband Monolithic Millimeter-Wave Integrated Power Amplifiers

    Get PDF
    Die vorliegende Arbeit beschreibt Methoden und Techniken zur Optimierung und Realisierung von verteilten magnetischen Transformatoren für deren Einsatz in Anpassnetzwerken von Monolithischen Integrierten Millimeterwellenschaltungen (engl. MMICs). Es werden Strategien für die Effizienz- und Bandbreitenoptimierung verteilter Transformatoren vorgestellt. Diese werden mit Hilfe einer optimierten Transformatorgeometrie verifiziert und anhand von zwei MMIC Leistungsverstärkern demonstriert

    Microwave and Millimeter-Wave Signal Power Generation

    Get PDF

    Design of monolithic microwave integrated circuits for 60 GHz band

    Get PDF
    Potreba za bežicnim komunikacioniom linkovima velikih brzina prenosa podataka je podstaknuta ekspanzijom prenosivih uređaja i multimedijalnih servisa, uz pogodnost da priroda korišcenja dozvoljava a ponekad i zahteva ogranicen domet. Problem kapaciteta komunikacionih linkova i sve veceg broja korisnika se može rešiti prelaskom u opseg ucestanosti od 30 do 300 GHz, koji se naziva i milimetarski opseg. Visoka radna ucestanost pruža mogucnost korišcenja kanala velikog kapaciteta, kao i fizicki malih antenskih nizova za fokusiranje i prostornu lokalizaciju prijemnog i predajnog snopa. Milimetarski opseg nalazi primene i u ostalim oblastima, kao što su industrijske, medicinske i bezbednosne. U komercijalnim primenama od interesa je opseg ucestanosti oko 60 GHz, koji je dodeljen za nelicenciranu upotrebu širom sveta. Razvoj CMOS i BiCMOS tehnologija je omogucio da se sistemi u 60 GHz-om opsegu mogu integrisati u standardnim procesima. Pored viših radnih ucestanosti, skaliranje tehnologija uvodi i tehnološka ogranicenja koja degradiraju performanse ukoliko se njihov uticaj zanemari. Zanemareni efekti mogu doprineti vecim gubicima, koji povecavaju faktor šuma prijemnika i degradiraju efikasnost predajnika, ali i parazitnim preslušavanjima koja rezultuju neželjenim spektralnim komponentama. Stoga je potrebno razmotriti kvalitativne i kvantitativne pokazatelje uticaja tehnoloških ogranicenja na performanse i prilagoditi postupak projektovanja. Kriticni blokovi za domet primopredajnika su malošumni pojacavac na prijemnoj strani i pojacavac snage na predajnoj strani. U okviru teze predstavljen je postupak projektovanja malošumnog pojacavaca i pojacavaca snage za rad u 60 GHz-om opsegu i širokopojasnog delitelja ucestanosti. Uvedene su nove smernice projektovanja koje uzimaju u obzir tehnološka ogranicenja. Pokazano je da se pravilnim particionisanjem elektromagnetskog modela može postici dobro slaganje rezultata simulacije i merenja. Projektovana kola su fabrikovana u IHP Microelectronics korišcenjem 0.25 mm SiGe:C BiCMOS procesa (fT/fmax = 200 GHz). Parametri fabrikovanih kola su izmereni i verifikovani na stopicama cipa, upotrebom mikrotalasnih sondi...The need for high capacity wireless data links is driven by expansion of mobile devices and multimedia services, with the advantage that a typical use case allows, and sometimes demands, a limited range. Problems of limited communication link capacity and growing number of users can be solved by moving to frequency range of 30 - 300 GHz, also known as millimeter range. High operating frequency allows the use of high capacity channels, and physically small antenna arrays for beam steering and spatial localization. Millimeter region of spectrum is also suitable for industrial, scientific and security applications. Unlicensed 60 GHz band is available worldwide, and is attractive for commercial applications. Development of CMOS and BiCMOS technologies has enabled the integration of complete 60 GHz systems in standard processes. Technology scaling enables the use of higher operating frequencies, but imposes new design constraints which may degrade the performance if their effect is neglected. Neglected effects may contribute to higher losses, which increase the noise figure of receiver and degrade transmitter efficiency, and also to parasitic coupling which results in undesired spectral components. Therefore, qualitative and quantitative measure of technology constraints impact on performance degradation needs to be evaluated, and applied to circuit design process. Critical blocks for transceiver range are low noise amplifier on receiver, and power amplifier on transmitter side. Design procedures for 60 GHz low noise and power amplifiers, and wideband frequency divider are presented in this thesis. Guidelines for technology constraints aware design are used in the presented design flow. Good agreement of experimental and simulation results is achieved by proper electromagnetic model partitioning. Designed circuits have been fabricated in IHP Microelectronics 0.25 mm SiGe:C BiCMOS process (fT/fmax = 200 GHz). Test chip parameters have been measured and verified on-wafer by using microwave probes..

    Photonic and Electronic Co-integration for Millimetre-Wave Hybrid Photonic-Wireless Links

    Get PDF

    Photonic and Electronic Co-integration for Millimetre-Wave Hybrid Photonic-Wireless Links

    Get PDF

    Opportunities for radio frequency nanoelectronic integrated circuits using carbon-based technologies

    Get PDF
    This thesis presents a body of work on the modeling of and performance predictions for carbon nanotube field-effect transistors (CNFET) and graphene field-effect transistors (GFET). While conventional silicon-based CMOS is expected to reach its ultimate scaling limits during the next decade, these two novel technologies are promising candidates for future high-performance electronics. The main goal of this work is to investigate on the opportunities of using such carbon-based electronics for RF integrated circuits. This thesis addresses 1) the modeling of noise and process variability in CNFETs, 2) RF performance predictions for CNFETs, and 3) an accurate GFET compact model. This work proposes the first CNFET noise compact model. Noise is of primary importance for RF applications and its description significantly increases the insight gained from simulation studies. Furthermore, a CNFET variability model is presented, which handles tube synthesis and metal tube removal imperfections. These two model extensions have been added to the Stanford CNFET compact model and allow for the variability-aware RF performance assessment of the CNFET technology. In continuation, comprehensive RF performance projections for CNFETs are provided both on the device and circuit level. The overall set of ITRS RF-CMOS technology requirement FoMs is determined and shows that the CNFET performs excellently in terms of speed, gain, and minimum noise figure. Furthermore, for the first time FoMs are reported for the basic RF building blocks low-noise amplifier and oscillator. In addition, it is shown that CNFET downscaling yields significant performance improvements. Based on these analyses it is confirmed that the CNFET has the potential to outperform Si-CMOS in RF applications. A third key contribution of this thesis is the development of an accurate GFET compact model. Previous compact models simplify several physical aspects, which can cause erroneous simulation results. Here, an accurate yet simple mathematical description of the GFET’s current-voltage relation is proposed and implemented in Verilog-A. Comprehensive error analyses are done in order to highlight the advantages of the new approach. Furthermore, the model is verified against measurement results. The developed GFET model is an important step towards better understanding the characteristics and opportunities of graphene-based analog circuitry

    Liquid Crystal Mixed Beam-Switching and Beam-Steering Network in Hybrid Metallic and Dielectric Waveguide Technology

    Get PDF
    Future communication systems at W-band are demanding highly directive antenna systems with beam-steering capability. For the hardware implementation of analogue beam-steering at millimetre waves, the microwave liquid crystal (LC) technology is ideally suited. It takes advantage of specifically synthesised LCs for microwaves in combination with appropriate device and biasing concepts, where the orientation of the LC, and therefore, its effective permittivity can be continuously tuned. It has low dielectric losses above 10GHz with a decreasing trend with increasing frequency. To exploit these unique characteristics, the focus of this scientific work is set for the first time on the investigation of an LC-based network with mixed discrete beam-switching and continuous beam-steering capability between the switching states for high-gain antennas at W-band. It consists of a Butler matrix combined with continuously tuneable phase shifters and a novel type of RF switch, an interference-based Single-Pole n-Throw (SPnT). The interference principle of the SPnT allows a continuously adjustable power splitting ratio, and hence, the generation of multiple beams. Different technologies are investigated for the realisation of this mixed network. Due to its high level of integrability and compact designs, the standard low temperature co-fired ceramic technology is examined, however, for a first proof-of-concept at Ka-band only. For W-band, two low-loss technologies are investigated: tuneable metallic and dielectric waveguides. While metallic waveguides are well suited for the realisation of low-loss non-tuneable feeding networks, dielectric waveguides are better suited for the realisation of tuneable LC components at (sub)millimetre waves, since no metallic boundaries are limiting the integration of an electrical biasing network. As non-tuneable core part, a Butler matrix with an average insertion loss of 3.5 dB at 102 GHz is realised, which is based on a novel multifunctional crossover design, allowing a miniaturised in-plane realisation of the overall mixed network. As key component for tuning of the mixed beam-switching and beam-steering network, a step-index dielectric waveguide phase shifter is presented. With a phase shifter figure-of-merit of 100 °/dB at 102 GHz, this fully electrically biased phase shifter is going far beyond the state-of-the-art for electrically tuneableW-band phase shifter. To stay on the same technology platform and to allow an in-plane realisation from the input port up to the radiating elements, the interference-based SPnTs are additionally investigated by a hybrid implementation of metallic and dielectric waveguides. It exhibits an insertion loss of 3dB, while providing an isolation of 27 dB. Hence, this hybrid metallic and dielectric waveguide technology reveals a high potential not only for the presented LC-based mixed beam-switching and beam-steering network, but also for LC-tuned continuous beam-steering networks at frequencies above 100 GHz, since low-loss metallic waveguide feeding networks can be generally combined with high-performance tuneable dielectric waveguides

    Modern Applications in Optics and Photonics: From Sensing and Analytics to Communication

    Get PDF
    Optics and photonics are among the key technologies of the 21st century, and offer potential for novel applications in areas such as sensing and spectroscopy, analytics, monitoring, biomedical imaging/diagnostics, and optical communication technology. The high degree of control over light fields, together with the capabilities of modern processing and integration technology, enables new optical measurement systems with enhanced functionality and sensitivity. They are attractive for a range of applications that were previously inaccessible. This Special Issue aims to provide an overview of some of the most advanced application areas in optics and photonics and indicate the broad potential for the future
    corecore