315 research outputs found

    Classical and consecutive pattern avoidance in rooted forests

    Full text link
    Following Anders and Archer, we say that an unordered rooted labeled forest avoids the pattern σSk\sigma\in\mathcal{S}_k if in each tree, each sequence of labels along the shortest path from the root to a vertex does not contain a subsequence with the same relative order as σ\sigma. For each permutation σSk2\sigma\in\mathcal{S}_{k-2}, we construct a bijection between nn-vertex forests avoiding (σ)(k1)k=σ(1)σ(k2)(k1)k(\sigma)(k-1)k=\sigma(1)\cdots\sigma(k-2)(k-1)k and nn-vertex forests avoiding (σ)k(k1)=σ(1)σ(k2)k(k1)(\sigma)k(k-1)=\sigma(1)\cdots\sigma(k-2)k(k-1), giving a common generalization of results of West on permutations and Anders--Archer on forests. We further define a new object, the forest-Young diagram, which we use to extend the notion of shape-Wilf equivalence to forests. In particular, this allows us to generalize the above result to a bijection between forests avoiding {(σ1)k(k1),(σ2)k(k1),,(σ)k(k1)}\{(\sigma_1)k(k-1), (\sigma_2)k(k-1), \dots, (\sigma_\ell) k(k-1)\} and forests avoiding {(σ1)(k1)k,(σ2)(k1)k,,(σ)(k1)k}\{(\sigma_1)(k-1)k, (\sigma_2)(k-1)k, \dots, (\sigma_\ell) (k-1)k\} for σ1,,σSk2\sigma_1, \dots, \sigma_\ell \in \mathcal{S}_{k-2}. Furthermore, we give recurrences enumerating the forests avoiding {123k}\{123\cdots k\}, {213}\{213\}, and other sets of patterns. Finally, we extend the Goulden--Jackson cluster method to study consecutive pattern avoidance in rooted trees as defined by Anders and Archer. Using the generalized cluster method, we prove that if two length-kk patterns are strong-c-forest-Wilf equivalent, then up to complementation, the two patterns must start with the same number. We also prove the surprising result that the patterns 13241324 and 14231423 are strong-c-forest-Wilf equivalent, even though they are not c-Wilf equivalent with respect to permutations.Comment: 39 pages, 11 figure

    Pattern avoidance in labelled trees

    Full text link
    We discuss a new notion of pattern avoidance motivated by the operad theory: pattern avoidance in planar labelled trees. It is a generalisation of various types of consecutive pattern avoidance studied before: consecutive patterns in words, permutations, coloured permutations etc. The notion of Wilf equivalence for patterns in permutations admits a straightforward generalisation for (sets of) tree patterns; we describe classes for trees with small numbers of leaves, and give several bijections between trees avoiding pattern sets from the same class. We also explain a few general results for tree pattern avoidance, both for the exact and the asymptotic enumeration.Comment: 27 pages, corrected various misprints, added an appendix explaining the operadic contex

    Using homological duality in consecutive pattern avoidance

    Full text link
    Using the approach suggested in [arXiv:1002.2761] we present below a sufficient condition guaranteeing that two collections of patterns of permutations have the same exponential generating functions for the number of permutations avoiding elements of these collections as consecutive patterns. In short, the coincidence of the latter generating functions is guaranteed by a length-preserving bijection of patterns in these collections which is identical on the overlappings of pairs of patterns where the overlappings are considered as unordered sets. Our proof is based on a direct algorithm for the computation of the inverse generating functions. As an application we present a large class of patterns where this algorithm is fast and, in particular, allows to obtain a linear ordinary differential equation with polynomial coefficients satisfied by the inverse generating function.Comment: 12 pages, 1 figur

    Computational Approaches to Consecutive Pattern Avoidance in Permutations

    Full text link
    In recent years, there has been increasing interest in consecutive pattern avoidance in permutations. In this paper, we introduce two approaches to counting permutations that avoid a set of prescribed patterns consecutively. These algoritms have been implemented in the accompanying Maple package CAV, which can be downloaded from the author's website. As a byproduct of the first algorithm, we have a theorem giving a sufficient condition for when two pattern sets are strongly (consecutively) Wilf-Equivalent. For the implementation of the second algorithm, we define the cluster tail generating function and show that it always satisfies a certain functional equation. We also explain how the CAV package can be used to approximate asymptotic constants for single pattern avoidance.Comment: 12 page

    Inversion Polynomials for Permutations Avoiding Consecutive Patterns

    Full text link
    In 2012, Sagan and Savage introduced the notion of stst-Wilf equivalence for a statistic stst and for sets of permutations that avoid particular permutation patterns which can be extended to generalized permutation patterns. In this paper we consider invinv-Wilf equivalence on sets of two or more consecutive permutation patterns. We say that two sets of generalized permutation patterns Π\Pi and Π\Pi' are invinv-Wilf equivalent if the generating function for the inversion statistic on the permutations that simultaneously avoid all elements of Π\Pi is equal to the generating function for the inversion statistic on the permutations that simultaneously avoid all elements of Π\Pi'. In 2013, Cameron and Killpatrick gave the inversion generating function for Fibonacci tableaux which are in one-to-one correspondence with the set of permutations that simultaneously avoid the consecutive patterns 321321 and 312.312. In this paper, we use the language of Fibonacci tableaux to study the inversion generating functions for permutations that avoid Π\Pi where Π\Pi is a set of five or fewer consecutive permutation patterns. In addition, we introduce the more general notion of a strip tableaux which are a useful combinatorial object for studying consecutive pattern avoidance. We go on to give the inversion generating functions for all but one of the cases where Π\Pi is a subset of three consecutive permutation patterns and we give several results for Π\Pi a subset of two consecutive permutation patterns

    Descent c-Wilf Equivalence

    Full text link
    Let SnS_n denote the symmetric group. For any σSn\sigma \in S_n, we let des(σ)\mathrm{des}(\sigma) denote the number of descents of σ\sigma, inv(σ)\mathrm{inv}(\sigma) denote the number of inversions of σ\sigma, and LRmin(σ)\mathrm{LRmin}(\sigma) denote the number of left-to-right minima of σ\sigma. For any sequence of statistics stat1,statk\mathrm{stat}_1, \ldots \mathrm{stat}_k on permutations, we say two permutations α\alpha and β\beta in SjS_j are (stat1,statk)(\mathrm{stat}_1, \ldots \mathrm{stat}_k)-c-Wilf equivalent if the generating function of i=1kxistati\prod_{i=1}^k x_i^{\mathrm{stat}_i} over all permutations which have no consecutive occurrences of α\alpha equals the generating function of i=1kxistati\prod_{i=1}^k x_i^{\mathrm{stat}_i} over all permutations which have no consecutive occurrences of β\beta. We give many examples of pairs of permutations α\alpha and β\beta in SjS_j which are des\mathrm{des}-c-Wilf equivalent, (des,inv)(\mathrm{des},\mathrm{inv})-c-Wilf equivalent, and (des,inv,LRmin)(\mathrm{des},\mathrm{inv},\mathrm{LRmin})-c-Wilf equivalent. For example, we will show that if α\alpha and β\beta are minimally overlapping permutations in SjS_j which start with 1 and end with the same element and des(α)=des(β)\mathrm{des}(\alpha) = \mathrm{des}(\beta) and inv(α)=inv(β)\mathrm{inv}(\alpha) = \mathrm{inv}(\beta), then α\alpha and β\beta are (des,inv)(\mathrm{des},\mathrm{inv})-c-Wilf equivalent.Comment: arXiv admin note: text overlap with arXiv:1510.0431

    Some open problems on permutation patterns

    Full text link
    This is a brief survey of some open problems on permutation patterns, with an emphasis on subjects not covered in the recent book by Kitaev, \emph{Patterns in Permutations and words}. I first survey recent developments on the enumeration and asymptotics of the pattern 1324, the last pattern of length 4 whose asymptotic growth is unknown, and related issues such as upper bounds for the number of avoiders of any pattern of length kk for any given kk. Other subjects treated are the M\"obius function, topological properties and other algebraic aspects of the poset of permutations, ordered by containment, and also the study of growth rates of permutation classes, which are containment closed subsets of this poset.Comment: 20 pages. Related to upcoming talk at the British Combinatorial Conference 2013. To appear in London Mathematical Society Lecture Note Serie
    corecore