22 research outputs found

    Dynamic Data Driven Application System for Wildfire Spread Simulation

    Get PDF
    Wildfires have significant impact on both ecosystems and human society. To effectively manage wildfires, simulation models are used to study and predict wildfire spread. The accuracy of wildfire spread simulations depends on many factors, including GIS data, fuel data, weather data, and high-fidelity wildfire behavior models. Unfortunately, due to the dynamic and complex nature of wildfire, it is impractical to obtain all these data with no error. Therefore, predictions from the simulation model will be different from what it is in a real wildfire. Without assimilating data from the real wildfire and dynamically adjusting the simulation, the difference between the simulation and the real wildfire is very likely to continuously grow. With the development of sensor technologies and the advance of computer infrastructure, dynamic data driven application systems (DDDAS) have become an active research area in recent years. In a DDDAS, data obtained from wireless sensors is fed into the simulation model to make predictions of the real system. This dynamic input is treated as the measurement to evaluate the output and adjust the states of the model, thus to improve simulation results. To improve the accuracy of wildfire spread simulations, we apply the concept of DDDAS to wildfire spread simulation by dynamically assimilating sensor data from real wildfires into the simulation model. The assimilation system relates the system model and the observation data of the true state, and uses analysis approaches to obtain state estimations. We employ Sequential Monte Carlo (SMC) methods (also called particle filters) to carry out data assimilation in this work. Based on the structure of DDDAS, this dissertation presents the data assimilation system and data assimilation results in wildfire spread simulations. We carry out sensitivity analysis for different densities, frequencies, and qualities of sensor data, and quantify the effectiveness of SMC methods based on different measurement metrics. Furthermore, to improve simulation results, the image-morphing technique is introduced into the DDDAS for wildfire spread simulation

    A data-driven fire spread simulator: validation in Vall-llobrega's Fire

    Get PDF
    A Data-Driven Fire Spread Simulator: Validation in Vall-llobrega’s Fire Oriol Rios, Mario Miguel Valero, Elsa Pastor* and Eulàlia Planas Department of Chemical Engineering, Centre for Technological Risk Studies, Universitat Politècnica de Catalunya, Barcelona, Spain While full-physics fire models continue to be unsuitable for wildfire emergency situations, the so-called operational fire spread simulators are incapable of providing accurate estimations of the macroscopic fire behavior while quickly reacting to a change of governing spread mechanisms. A promising approach to overcome these limitations are data-driven simulators, which assimilate observed data with the aim of improving their forecast with affordable computation times. Although preliminary results obtained by several data-driven simulators are promising, this scheme needs intensive validation. Detailed studies of the particular aspects related to data assimilation are essential to gain insight about the applicability of this approach to operational wildfire simulation. This paper presents the validation of the simulator presented in Rios et al. (2014b, 2016, 2018) with a large scenario of real complexity with intricate terrain. The study case corresponds to a wildfire of significant repercussions occurred in Catalonia in March 2014. We employed as reference data the event reconstruction performed by the Catalan Fire Service and validated with operational observations. Detailed information about fuel and meteorology was collected by the fire brigades and allowed reconstructing the fire development with Farsite, a widely employed simulator. Subsequently, our simulator was tested without a detailed description of the fuel and wind parameters, i.e., imitating its intended deployment conditions. It proved capable of automatically estimating them and correctly simulating the fire spread. Additionally, the effect of the assimilation window on the forecast accuracy was analyzed. These results showed that the simulator is able to correctly handle complex terrain and wind situations to successfully deliver a short-term fire-front forecast in those real and complex scenarios.Peer ReviewedPostprint (author's final draft

    Distributed Particle Filters for Data Assimilation in Simulation of Large Scale Spatial Temporal Systems

    Get PDF
    Assimilating real time sensor into a running simulation model can improve simulation results for simulating large-scale spatial temporal systems such as wildfire, road traffic and flood. Particle filters are important methods to support data assimilation. While particle filters can work effectively with sophisticated simulation models, they have high computation cost due to the large number of particles needed in order to converge to the true system state. This is especially true for large-scale spatial temporal simulation systems that have high dimensional state space and high computation cost by themselves. To address the performance issue of particle filter-based data assimilation, this dissertation developed distributed particle filters and applied them to large-scale spatial temporal systems. We first implemented a particle filter-based data assimilation framework and carried out data assimilation to estimate system state and model parameters based on an application of wildfire spread simulation. We then developed advanced particle routing methods in distributed particle filters to route particles among the Processing Units (PUs) after resampling in effective and efficient manners. In particular, for distributed particle filters with centralized resampling, we developed two routing policies named minimal transfer particle routing policy and maximal balance particle routing policy. For distributed PF with decentralized resampling, we developed a hybrid particle routing approach that combines the global routing with the local routing to take advantage of both. The developed routing policies are evaluated from the aspects of communication cost and data assimilation accuracy based on the application of data assimilation for large-scale wildfire spread simulations. Moreover, as cloud computing is gaining more and more popularity; we developed a parallel and distributed particle filter based on Hadoop & MapReduce to support large-scale data assimilation

    Data Assimilation for Wildland Fires: Ensemble Kalman filters in coupled atmosphere-surface models

    Full text link
    Two wildland fire models are described, one based on reaction-diffusion-convection partial differential equations, and one based on semi-empirical fire spread by the level let method. The level set method model is coupled with the Weather Research and Forecasting (WRF) atmospheric model. The regularized and the morphing ensemble Kalman filter are used for data assimilation.Comment: Minor revision, except description of the model expanded. 29 pages, 9 figures, 53 reference

    Stability of Atmospheric Flow and Low-Level Jets Influencing Forest Fire Behaviour - An EFFIS Report

    Get PDF
    During the past years, there have been a considerable number of occasions that a forest fire burns with such strong intensity that seems far out of proportion to apparent burning conditions. This proved to be the case for the Sweden fire “blow-up” that took place during 4 August 2014 between Sala and Surahammar municipalities. The fire broke out after an unusual spell of hot, dry summer weather in northern Europe and proved to be the Sweden's largest wildfire in 40 years encompassing an area of ~15,000 hectares. The fire was declared a national emergency. Close investigation of fire weather parameters revealed the existence of an upper-air trough linked to a dissolving warm front on the previous day (3 August) providing low stability values over the fire centroid and the approach of a cold front from southwest further lowering the stability of the atmosphere. But above all, the air dryness and the prevailing of strong surface wind gusts due to a Secondary Low-Level Jet (SLLJ) at 950 hPa accompanied by a short-wave trough most pronounced at 700 hPa (the level of the main LLJ’s kernel of max winds) made ideal conditions for such an extreme event. In such a case, the left entrance area of SLLJ would have allowed an ageostrophic circulation to feed dry air the fire by a direct downward current during the critical hours of 4 August. The time that the SLLJ was crossing and intensifying over and to the east of fire centroid found to be in agreement with the position and movement of the area of maximum instability as defined by the very high (and at times “saturated”) values of Haines Index (HI) being combined with almost “saturated” Fire Weather Index (FWI) values. The HI gives an indication about the potential for a fire "blow­-up” due to low stability values of the atmosphere whereas FWI provides a description of the fire suppression difficulty. It should be noted that a fire blow-­up would lead to erratic/extreme fire behavior. Most of the initial simulations utilising ECMWF instantaneous wind speed values, as driving terms for EFFIS (European Forest Fires Information System) fire evolution models, namely FireSim and FARSITE, were inaccurate due to errors in the intensity and gustiness of true prevailing winds. By introducing model gust factor values (GFs) instead of instantaneous wind speeds (WSs) significant improvement in accuracy was accomplished in all fire evolution simulations. In such distinct unstable environment and under the presence and influence of both LLJ and SLLJ the utilization of model gust factors instead of instantaneous winds found to be more appropriate for simulating fire evolution behavior. Overall, it seems quite important to consider the concept of atmospheric stability, dryness and the presence of LLJs/SLLJs as key elements in the forest fire management system particularly in circumstances conducive to interactions within the PBL (Planetary Boundary Layer).JRC.H.3-Forest Resources and Climat

    A Bayesian Spatio-Temporal Level Set Dynamic Model and Application to Fire Front Propagation

    Full text link
    Intense wildfires impact nature, humans, and society, causing catastrophic damage to property and the ecosystem, as well as the loss of life. Forecasting wildfire front propagation is essential in order to support fire fighting efforts and plan evacuations. The level set method has been widely used to analyze the change in surfaces, shapes, and boundaries. In particular, a signed distance function used in level set methods can readily be interpreted to represent complicated boundaries and their changes in time. While there is substantial literature on the level set method in wildfire applications, these implementations have relied on a heavily-parameterized formula for the rate of spread. These implementations have not typically considered uncertainty quantification or incorporated data-driven learning. Here, we present a Bayesian spatio-temporal dynamic model based on level sets, which can be utilized for forecasting the boundary of interest in the presence of uncertain data and lack of knowledge about the boundary velocity. The methodology relies on both a mechanistically-motivated dynamic model for level sets and a stochastic spatio-temporal dynamic model for the front velocity. We show the effectiveness of our method via simulation and with forecasting the fire front boundary evolution of two classic California megafires - the 2017-2018 Thomas fire and the 2017 Haypress

    The economic value of fire damages in Tuscan agroforestry areas

    Get PDF
    The Tuscan Region (Central Italy) spends about 12 million euros every year in the prevention and suppression of forest fires. In this context, this study aims to analyse the economic and environmental benefits derived from fire suppression activities. Starting from a case study of a real fire event in Tuscany, we simulated three hypothetical scenarios (with different fire durations) without fire extinction activities planned by using the open source software FARSITE. Benefits derived from fire extinction activities can be quantified as the avoided damage, which has been calculated through the estimation of the total economic value of forests not destroyed by fire thanks to the extinction action. The avoided damage is represented by the difference between values of forest areas burned by the real fire event and those burned by simulated fire. By providing an economic estimation of avoided damages, our results confirm that forest fire services and forest management have a high impact on both the economy and the environment

    DATA-DRIVEN SIMULATIONS OF WILDFIRE SPREAD AT REGIONAL SCALES

    Get PDF
    Current wildfire spread simulators lack the ability to provide accurate prediction of the active flame burning areas at regional scales due to two main challenges: a modeling challenge associated with providing accurate mathematical representations of the multi-physics multi-scale processes that induce the fire dynamics, and a data challenge associated with providing accurate estimates of the initial fire position and the physical parameters that are required by the fire spread models. A promising approach to overcome these limitations is data assimilation: data assimilation aims at integrating available observations into the fire spread simulator, while accounting for their respective uncertainties, in order to infer a more accurate estimate of the fire front position and to produce a more reliable forecast of the wildfire behavior. The main objective of the present study is to design and evaluate suitable algorithms for regional-scale wildfire spread simulations, which are able to properly handle the variations in wildfire spread due to the significant spatial heterogeneity in the model inputs and to the temporal changes in the wildfire behavior. First we developed a grid-based spatialized parameter estimation approach where the estimation targets are the spatially-varying input model parameters. Then we proposed an efficient and robust method to compute the discrepancy between the observed and simulated fire fronts, which is based on a front shape similarity measure inspired from image processing theory. The new method is demonstrated in the context of Luenberger observer-based state estimation strategy. Finally we developed a dual state-parameter estimation method where we estimate both model state and model parameters simultaneously in order to retrieve more accurate physical values of model parameters and achieve a better forecast performance in terms of fire front positions. All these efforts aim at designing algorithmic solutions to overcome the difficulties associated with spatially-varying environmental conditions and potentially complex fireline shapes and topologies. It paves the way towards real-time monitoring and forecasting of wildfire dynamics at regional scales
    corecore