1,415 research outputs found

    Experimental and Case studies of Long-distance Multi-hopping Data Transmission Techniques for Wildfire Sensors Using the LoRa-Based Mesh Sensor Network

    Get PDF
    This study proposes the LoRa-Based Mesh Sensor Network without relying on LoRaWAN connection sending the communication data in the form of Star-to-Star, it can be sends the data in the form of peer-to-peer without the gateway. In the case that a longer distance is needed, the system is connected by a means of multi-hop presenting the hardware and software model through the use of low voltage power. Then, the testing is done using point to point and the received signal is measured by a gauge and compared with the model in accordance with the theoretical principle

    The Emerging Internet of Things Marketplace From an Industrial Perspective: A Survey

    Get PDF
    The Internet of Things (IoT) is a dynamic global information network consisting of internet-connected objects, such as Radio-frequency identification (RFIDs), sensors, actuators, as well as other instruments and smart appliances that are becoming an integral component of the future internet. Over the last decade, we have seen a large number of the IoT solutions developed by start-ups, small and medium enterprises, large corporations, academic research institutes (such as universities), and private and public research organisations making their way into the market. In this paper, we survey over one hundred IoT smart solutions in the marketplace and examine them closely in order to identify the technologies used, functionalities, and applications. More importantly, we identify the trends, opportunities and open challenges in the industry-based the IoT solutions. Based on the application domain, we classify and discuss these solutions under five different categories: smart wearable, smart home, smart, city, smart environment, and smart enterprise. This survey is intended to serve as a guideline and conceptual framework for future research in the IoT and to motivate and inspire further developments. It also provides a systematic exploration of existing research and suggests a number of potentially significant research directions.Comment: IEEE Transactions on Emerging Topics in Computing 201

    IoT-based sound-level control for audio amplifiers: mosques as a case study

    Get PDF
    When using audio-amplifiers in the open, uneven distribution of sound makes people unpleasant because it is loud or unheared. This unfortunate situation arises because audio-amplifiers volumes are set according to the guess of sound technicians. Mosques, as an example, are distributed inside wide areas and fire Azan five times a day. Due to the relatively long distances between them, speed and direction of the wind impose setting sound levels prior to each Azan such that all the area is covered and the overlap is minimized. In this paper, we propose a system based on internet of things (IoT) model to control the sound level of each mosque in the community. An IoT device (one in a mosque) sets the level of sound fired by the audio-amplifier. To do that, a synchronized series of tones is fired from each node. Once a node hears these tones, the process of sound level control starts to indicate the distances to heared nodes. As the approximate distances between nodes are known, each node can calculate its suitable sound level. Results showed that the proposed system is effective in setting sound levels for mosques audio amplifiers

    Audio-Based Wildfire Detection on Embedded Systems

    Get PDF
    The occurrence of wildfires often results in significant fatalities. As wildfires are notorious for their high speed of spread, the ability to identify wildfire at its early stage is essential in quickly obtaining control of the fire and in reducing property loss and preventing loss of life. This work presents a machine learning wildfire detecting data pipeline that can be deployed on embedded systems in remote locations. The proposed data pipeline consists of three main steps: audio preprocessing, feature engineering, and classification. Experiments show that the proposed data pipeline is capable of detecting wildfire effectively with high precision and is capable of detecting wildfire sound over the forest’s background soundscape. When being deployed on a Raspberry Pi 4, the proposed data pipeline takes 66 milliseconds to process a 1 s sound clip. To the knowledge of the author, this is the first edge-computing implementation of an audio-based wildfire detection system

    Internet of Things for Environmental Sustainability and Climate Change

    Get PDF
    Our world is vulnerable to climate change risks such as glacier retreat, rising temperatures, more variable and intense weather events (e.g., floods, droughts, and frosts), deteriorating mountain ecosystems, soil degradation, and increasing water scarcity. However, there are big gaps in our understanding of changes in regional climate and how these changes will impact human and natural systems, making it difficult to anticipate, plan, and adapt to the coming changes. The IoT paradigm in this area can enhance our understanding of regional climate by using technology solutions, while providing the dynamic climate elements based on integrated environmental sensing and communications that is necessary to support climate change impacts assessments in each of the related areas (e.g., environmental quality and monitoring, sustainable energy, agricultural systems, cultural preservation, and sustainable mining). In the IoT in Environmental Sustainability and Climate Change chapter, a framework for informed creation, interpretation and use of climate change projections and for continued innovations in climate and environmental science driven by key societal and economic stakeholders is presented. In addition, the IoT cyberinfrastructure to support the development of continued innovations in climate and environmental science is discussed

    Design and Field Test of a WSN Platform Prototype for Long-Term Environmental Monitoring

    Get PDF
    Long-term wildfire monitoring using distributed in situ temperature sensors is an accurate, yet demanding environmental monitoring application, which requires long-life, low-maintenance, low-cost sensors and a simple, fast, error-proof deployment procedure. We present in this paper the most important design considerations and optimizations of all elements of a low-cost WSN platform prototype for long-term, low-maintenance pervasive wildfire monitoring, its preparation for a nearly three-month field test, the analysis of the causes of failure during the test and the lessons learned for platform improvement. The main components of the total cost of the platform (nodes, deployment and maintenance) are carefully analyzed and optimized for this application. The gateways are designed to operate with resources that are generally used for sensor nodes, while the requirements and cost of the sensor nodes are significantly lower. We define and test in simulation and in the field experiment a simple, but effective communication protocol for this application. It helps to lower the cost of the nodes and field deployment procedure, while extending the theoretical lifetime of the sensor nodes to over 16 years on a single 1 Ah lithium battery

    July 2017 news releases

    Get PDF

    Dynamic Resource Allocation in Disaster Response: Tradeoffs in Wildfire Suppression

    Get PDF
    Challenges associated with the allocation of limited resources to mitigate the impact of natural disasters inspire fundamentally new theoretical questions for dynamic decision making in coupled human and natural systems. Wildfires are one of several types of disaster phenomena, including oil spills and disease epidemics, where (1) the disaster evolves on the same timescale as the response effort, and (2) delays in response can lead to increased disaster severity and thus greater demand for resources. We introduce a minimal stochastic process to represent wildfire progression that nonetheless accurately captures the heavy tailed statistical distribution of fire sizes observed in nature. We then couple this model for fire spread to a series of response models that isolate fundamental tradeoffs both in the strength and timing of response and also in division of limited resources across multiple competing suppression efforts. Using this framework, we compute optimal strategies for decision making scenarios that arise in fire response policy

    Smart scientific instruments based on smartphones: a brief review

    Get PDF
    Smartphone has gone beyond a communication hub to be a measurement device itself, thanks to various built-in sensors. This article reviewed achievements in transforming ubiquitous smartphones into cost-effective scientific instruments for educational laboratories, environmental studies, point-of-care diagnostics, home-based health monitoring, and rehabilitation. Magnetic fields were precisely measured by built-in magnetometers, leading to demonstrations for engineering and medical applications. The smartphone-based joint-angle measurement was a viable alternative to traditional goniometers. Characterizations of optical signals captured by cameras led to portable spectrophotometers and colorimeters for both educational and practical uses. Interestingly, smartphones became a platform for high-resolution microscopes and fluorescence microscopes were developed with add-on components. These smart instruments become even more attractive options in the pandemic period with limited facility and laboratory access
    • …
    corecore