2,072 research outputs found

    Discovering Beaten Paths in Collaborative Ontology-Engineering Projects using Markov Chains

    Full text link
    Biomedical taxonomies, thesauri and ontologies in the form of the International Classification of Diseases (ICD) as a taxonomy or the National Cancer Institute Thesaurus as an OWL-based ontology, play a critical role in acquiring, representing and processing information about human health. With increasing adoption and relevance, biomedical ontologies have also significantly increased in size. For example, the 11th revision of the ICD, which is currently under active development by the WHO contains nearly 50,000 classes representing a vast variety of different diseases and causes of death. This evolution in terms of size was accompanied by an evolution in the way ontologies are engineered. Because no single individual has the expertise to develop such large-scale ontologies, ontology-engineering projects have evolved from small-scale efforts involving just a few domain experts to large-scale projects that require effective collaboration between dozens or even hundreds of experts, practitioners and other stakeholders. Understanding how these stakeholders collaborate will enable us to improve editing environments that support such collaborations. We uncover how large ontology-engineering projects, such as the ICD in its 11th revision, unfold by analyzing usage logs of five different biomedical ontology-engineering projects of varying sizes and scopes using Markov chains. We discover intriguing interaction patterns (e.g., which properties users subsequently change) that suggest that large collaborative ontology-engineering projects are governed by a few general principles that determine and drive development. From our analysis, we identify commonalities and differences between different projects that have implications for project managers, ontology editors, developers and contributors working on collaborative ontology-engineering projects and tools in the biomedical domain.Comment: Published in the Journal of Biomedical Informatic

    Onto.PT: Automatic Construction of a Lexical Ontology for Portuguese

    Get PDF
    This ongoing research presents an alternative to the man- ual creation of lexical resources and proposes an approach towards the automatic construction of a lexical ontology for Portuguese. Tex- tual sources are exploited in order to obtain a lexical network based on terms and, after clustering and mapping, a wordnet-like lexical on- tology is created. At the end of the paper, current results are shown

    Tags Are Related: Measurement of Semantic Relatedness Based on Folksonomy Network

    Get PDF
    Folksonomy and tagging systems, which allow users to interactively annotate a pool of shared resources using descriptive tags, have enjoyed phenomenal success in recent years. The concepts are organized as a map in human mind, however, the tags in folksonomy, which reflect users' collaborative cognition on information, are isolated with current approach. What we do in this paper is to estimate the semantic relatedness among tags in folksonomy: whether tags are related from semantic view, rather than isolated? We introduce different algorithms to form networks of folksonomy, connecting tags by users collaborative tagging, or by resource context. Then we perform multiple measures of semantic relatedness on folksonomy networks to investigate semantic information within them. The result shows that the connections between tags have relatively strong semantic relatedness, and the relatedness decreases dramatically as the distance between tags increases. What we find in this paper could provide useful visions in designing future folksonomy-based systems, constructing semantic web in current state of the Internet, and developing natural language processing applications

    Web 2.0, language resources and standards to automatically build a multilingual named entity lexicon

    Get PDF
    This paper proposes to advance in the current state-of-the-art of automatic Language Resource (LR) building by taking into consideration three elements: (i) the knowledge available in existing LRs, (ii) the vast amount of information available from the collaborative paradigm that has emerged from the Web 2.0 and (iii) the use of standards to improve interoperability. We present a case study in which a set of LRs for diïŹ€erent languages (WordNet for English and Spanish and Parole-Simple-Clips for Italian) are extended with Named Entities (NE) by exploiting Wikipedia and the aforementioned LRs. The practical result is a multilingual NE lexicon connected to these LRs and to two ontologies: SUMO and SIMPLE. Furthermore, the paper addresses an important problem which aïŹ€ects the Computational Linguistics area in the present, interoperability, by making use of the ISO LMF standard to encode this lexicon. The diïŹ€erent steps of the procedure (mapping, disambiguation, extraction, NE identiïŹcation and postprocessing) are comprehensively explained and evaluated. The resulting resource contains 974,567, 137,583 and 125,806 NEs for English, Spanish and Italian respectively. Finally, in order to check the usefulness of the constructed resource, we apply it into a state-of-the-art Question Answering system and evaluate its impact; the NE lexicon improves the system’s accuracy by 28.1%. Compared to previous approaches to build NE repositories, the current proposal represents a step forward in terms of automation, language independence, amount of NEs acquired and richness of the information represented

    Mining Meaning from Wikipedia

    Get PDF
    Wikipedia is a goldmine of information; not just for its many readers, but also for the growing community of researchers who recognize it as a resource of exceptional scale and utility. It represents a vast investment of manual effort and judgment: a huge, constantly evolving tapestry of concepts and relations that is being applied to a host of tasks. This article provides a comprehensive description of this work. It focuses on research that extracts and makes use of the concepts, relations, facts and descriptions found in Wikipedia, and organizes the work into four broad categories: applying Wikipedia to natural language processing; using it to facilitate information retrieval and information extraction; and as a resource for ontology building. The article addresses how Wikipedia is being used as is, how it is being improved and adapted, and how it is being combined with other structures to create entirely new resources. We identify the research groups and individuals involved, and how their work has developed in the last few years. We provide a comprehensive list of the open-source software they have produced.Comment: An extensive survey of re-using information in Wikipedia in natural language processing, information retrieval and extraction and ontology building. Accepted for publication in International Journal of Human-Computer Studie
    • 

    corecore