1,205 research outputs found

    Cacti with Extremal PI Index

    Full text link
    The vertex PI index PI(G)=∑xy∈E(G)[nxy(x)+nxy(y)]PI(G) = \sum_{xy \in E(G)} [n_{xy}(x) + n_{xy}(y)] is a distance-based molecular structure descriptor, where nxy(x)n_{xy}(x) denotes the number of vertices which are closer to the vertex xx than to the vertex yy and which has been the considerable research in computational chemistry dating back to Harold Wiener in 1947. A connected graph is a cactus if any two of its cycles have at most one common vertex. In this paper, we completely determine the extremal graphs with the largest and smallest vertex PI indices among all the cacti. As a consequence, we obtain the sharp bounds with corresponding extremal cacti and extend a known result.Comment: Accepted by Transactions on Combinatorics, 201

    The bounds of vertex Padmakar-Ivan index on k-trees

    Get PDF
    © 2019 by the authors. The Padmakar-Ivan (PI) index is a distance-based topological index and a molecular structure descriptor, which is the sum of the number of vertices over all edges uv of a graph such that these vertices are not equidistant from u and v. In this paper, we explore the results of PI-indices from trees to recursively clustered trees, the k-trees. Exact sharp upper bounds of PI indices on k-trees are obtained by the recursive relationships, and the corresponding extremal graphs are given. In addition, we determine the PI-values on some classes of k-trees and compare them, and our results extend and enrich some known conclusions

    Complexity of Splits Reconstruction for Low-Degree Trees

    Full text link
    Given a vertex-weighted tree T, the split of an edge xy in T is min{s_x(xy), s_y(xy)} where s_u(uv) is the sum of all weights of vertices that are closer to u than to v in T. Given a set of weighted vertices V and a multiset of splits S, we consider the problem of constructing a tree on V whose splits correspond to S. The problem is known to be NP-complete, even when all vertices have unit weight and the maximum vertex degree of T is required to be no more than 4. We show that the problem is strongly NP-complete when T is required to be a path, the problem is NP-complete when all vertices have unit weight and the maximum degree of T is required to be no more than 3, and it remains NP-complete when all vertices have unit weight and T is required to be a caterpillar with unbounded hair length and maximum degree at most 3. We also design polynomial time algorithms for the variant where T is required to be a path and the number of distinct vertex weights is constant, and the variant where all vertices have unit weight and T has a constant number of leaves. The latter algorithm is not only polynomial when the number of leaves, k, is a constant, but also fixed-parameter tractable when parameterized by k. Finally, we shortly discuss the problem when the vertex weights are not given but can be freely chosen by an algorithm. The considered problem is related to building libraries of chemical compounds used for drug design and discovery. In these inverse problems, the goal is to generate chemical compounds having desired structural properties, as there is a strong correlation between structural properties, such as the Wiener index, which is closely connected to the considered problem, and biological activity

    On Topological Indices And Domination Numbers Of Graphs

    Get PDF
    Topological indices and dominating problems are popular topics in Graph Theory. There are various topological indices such as degree-based topological indices, distance-based topological indices and counting related topological indices et al. These topological indices correlate certain physicochemical properties such as boiling point, stability of chemical compounds. The concepts of domination number and independent domination number, introduced from the mid-1860s, are very fundamental in Graph Theory. In this dissertation, we provide new theoretical results on these two topics. We study k-trees and cactus graphs with the sharp upper and lower bounds of the degree-based topological indices(Multiplicative Zagreb indices). The extremal cacti with a distance-based topological index (PI index) are explored. Furthermore, we provide the extremal graphs with these corresponding topological indices. We establish and verify a proposed conjecture for the relationship between the domination number and independent domination number. The corresponding counterexamples and the graphs achieving the extremal bounds are given as well

    Bounds on hyper-status connectivity index of graphs

    Get PDF
    In this paper, we obtain the bounds for the hyper-status connectivity indices of a connected graph and its complement in terms of other graph invariants. In addition, the hyper-status connectivity indices of some composite graphs such as Cartesian product, join and composition of two connected graphs are obtained. We apply some of our results to compute the hyper-status connectivity indices of some important classes of graphs.Publisher's Versio

    Harmonic index and harmonic polynomial on graph operations

    Get PDF
    Some years ago, the harmonic polynomial was introduced to study the harmonic topological index. Here, using this polynomial, we obtain several properties of the harmonic index of many classical symmetric operations of graphs: Cartesian product, corona product, join, Cartesian sum and lexicographic product. Some upper and lower bounds for the harmonic indices of these operations of graphs, in terms of related indices, are derived from known bounds on the integral of a product on nonnegative convex functions. Besides, we provide an algorithm that computes the harmonic polynomial with complexity O(n 2 ).This work was supported in part by two grants from Ministerio de Economía y Competititvidad, Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) (MTM2016-78227-C2-1-P and MTM2017-90584-REDT), Spain
    • …
    corecore