1,246 research outputs found

    SWIFT: A Narrowband-Friendly Cognitive Wideband Network

    Get PDF
    Wideband technologies in the unlicensed spectrum can satisfy the ever-increasing demands for wireless bandwidth created by emerging rich media applications. The key challenge for such systems, however, is to allow narrowband technologies that share these bands (say, 802.11 a/b/g/n, Zigbee) to achieve their normal performance, without compromising the throughput or range of the wideband network.This paper presents SWIFT, the first system where high-throughput wideband nodes are shown in a working deployment to coexist with unknown narrowband devices, while forming a network of their own. Prior work avoids narrowband devices by operating below the noise level and limiting itself to a single contiguous unused band. While this achieves coexistence, it sacrifices the throughput and operating distance of the wideband device. In contrast, SWIFT creates high throughput wireless links by weaving together non-contiguous unused frequency bands that change as narrowband devices enter or leave the environment. This design principle of cognitive aggregation allows SWIFT to achieve coexistence, while operating at normal power, and thereby obtaining higher throughput and greater operating range. We implement SWIFT on a wideband hardware platform, and evaluate it in the presence of 802.11 devices. In comparison to a baseline that coexists with narrowband devices by operating below their noise level, SWIFT is equally narrowband-friendly but achieves 3.6x-10.5x higher throughput and 6x greater range

    CPLD-PGPS scheduler in wireless OFDM systems

    Get PDF
    In this paper, we propose a new scheduler for orthogonal frequency-division multiplexing (OFDM) wireless communication systems, called Channel-Condition and Packet-Length Dependent Packet Generalized Processor Sharing (CPLD-PGPS) scheduler. Based on PGPS, the CPLD scheduler considers both the physical channel condition and the length of packets, and optimally allocates the sub-carriers to different users. The total transmit power is adaptively allocated to each subcarrier. With this scheduler, the system can achieve better system BER performance, and correspondingly superior PER performance. The system throughput is improved, the required bandwidth is guaranteed, and long term fairness for all traffic in the system is provided. In order to reduce the complexity, a simplified algorithm is proposed, which maintains the system throughput as in the original scheduler, and guarantees the system performance with properly set system parameters. The superior performance of the proposed schedulers is demonstrated by simulation with multimedia traffic. © 2006 IEEE.published_or_final_versio

    Tactical communication systems based on civil standards: Modeling in the MiXiM framework

    Full text link
    In this paper, new work is presented belonging to an ongoing study, which evaluates civil communication standards as potential candidates for the future military Wide Band Waveforms (WBWFs). After an evaluation process of possible candidates presented in [2], the selection process in [1] showed that the IEEE 802.11n OFDM could be a possible military WBWF candidate, but it should be further investigated first in order to enhance or even replace critical modules. According to this, some critical modules of the physical layer has been further analyzed in [3] regarding the susceptibility of the OFDM signal under jammer influences. However, the critical modules of the MAC layer (e.g., probabilistic medium access CSMA/CA) have not been analysed. In fact, it was only suggested in [2] to replace this medium access by the better suited Unified Slot Allocation Protocol - Multiple Access (USAP-MA) [4]. In this regard, the present contribution describes the design paradigms of the new MAC layer and explains how the proposed WBWF candidate has been modelled within the MiXiM Framework of the OMNeT++ simulator.Comment: Published in: A. F\"orster, C. Sommer, T. Steinbach, M. W\"ahlisch (Eds.), Proc. of 1st OMNeT++ Community Summit, Hamburg, Germany, September 2, 2014, arXiv:1409.0093, 201

    Frequency-aware rate adaptation and MAC protocol

    Get PDF
    There has been burgeoning interest in wireless technologies that can use wider frequency spectrum. Technology advances, such as 802.11n and ultra-wideband (UWB), are pushing toward wider frequency bands. The analog-to-digital TV transition has made 100-250 MHz of digital whitespace bandwidth available for unlicensed access. Also, recent work on WiFi networks has advocated discarding the notion of channelization and allowing all nodes to access the wide 802.11 spectrum in order to improve load balancing. This shift towards wider bands presents an opportunity to exploit frequency diversity. Specifically, frequencies that are far from each other in the spectrum have significantly different SNRs, and good frequencies differ across sender-receiver pairs. This paper presents FARA, a combined frequency-aware rate adaptation and MAC protocol. FARA makes three departures from conventional wireless network design: First, it presents a scheme to robustly compute per-frequency SNRs using normal data transmissions. Second, instead of using one bit rate per link, it enables a sender to adapt the bitrate independently across frequencies based on these per-frequency SNRs. Third, in contrast to traditional frequency-oblivious MAC protocols, it introduces a MAC protocol that allocates to a sender-receiver pair the frequencies that work best for that pair. We have implemented FARA in FPGA on a wideband 802.11-compatible radio platform. Our experiments reveal that FARA provides a 3.1x throughput improvement in comparison to frequency-oblivious systems that occupy the same spectrum.Industrial Technology Research InstituteNational Science Foundation (U.S.)

    A case for adaptive sub-carrier level power allocation in OFDMA networks

    Get PDF
    In today's OFDMA networks, the transmission power is typically fixed and the same for all the sub-carriers that compose a channel. The sub-carriers though, experience different degrees of fading and thus, the received power is different for different sub-carriers; while some frequencies experience deep fades, others are relatively unaffected. In this paper, we make a case of redistributing the power across the sub-carriers (subject to a fixed power budget constraint) to better cope with this frequency selectivity. Specifically, we design a joint power and rate adaptation scheme (called JPRA for short) wherein power redistribution is combined with sub-carrier level rate adaptation to yield significant throughput benefits. We further consider two variants of JPRA: (a) JPRA-CR where, the power is redistributed across sub-carriers so as to support a maximum common rate (CR) across sub-carriers and (b) JPRA-MT where, the goal is to redistribute power such that the transmission time of a packet is minimized. While the first variant decreases transceiver complexity and is simpler, the second is geared towards achieving the maximum throughput possible. We implement both variants of JPRA on our WARP radio testbed. Our extensive experiments demonstrate that our scheme provides a 35% improvement in total network throughput in testbed experiments compared to FARA, a scheme where only sub-carrier level rate adaptation is used. We also perform simulations to demonstrate the efficacy of JPRA in larger scale networks. © 2012 ACM

    Cognitive Radio Communications for Vehicular Technology – Wavelet Applications

    Get PDF
    Wireless communications are nowadays a dominant part of our lives: from domotics, through industrial applications and up to infomobility services. The key to the co-existence of wireless systems operating in closely located or even overlapping areas, is sharing of the spectral resource. The optimization of this resource is the main driving force behind the emerging changes in the policies for radio resources allocation. The current approach in spectrum usage specifies fixed frequency bands and transmission power limits for each radio transmitting system. This approach leads to a very low medium utilization factor for some frequency bands, caused by inefficient service allocation over vast geographical areas (radiomobile, radio and TV broadcasting, WiMAX) and also by the usage of large guard bands, obsolete now due to technological progress. A more flexible use of the spectral resource implies that the radio transceivers have the ability to monitor their radio environment and to adapt at specific transmission conditions. If this concept is supplemented with learning and decision capabilities, we refer to the Cognitive Radio (CR) paradigm. Some of the characteristics of a CR include localization, monitoring of the spectrum usage, frequency changing, transmission power control and, finally, the capacity of dynamically altering all these parameters (Haykin, 2005). This new cognitive approach is expected to have an important impact on the future regulations and spectrum policies. The dynamic access at the spectral resource is of extreme interest both for the scientific community as, considering the continuous request for wideband services, for the development of wireless technologies. From this point of view, a fundamental role is played by the Institute of Electrical and Electronic Engineers (IEEE) which in 2007 formed the Standards Coordinating Committee (SCC) 41 on Dynamic Spectrum Access Networks (DySPAN) having as main objective a standard for dynamic access wireless networks. Still within the IEEE frame, the 802.22 initiative defines a new WRAN (Wireless Regional Area Network) interface for wideband access based on cognitive radio techniques in the TV guard bands (the so-called “white spaces”). Coupled with the advantages and flexibility of CR systems and technologies, there is an ever-growing interest around the world in exploiting CR-enabled communications in vehicular and transportation environments. The integration of CR devices and cognitive radio networks into vehicles and associated infrastructures can lead to intelligent interactions with the transportation system, among vehicles, and even among radios within vehicles. Thus, improvements can be achieved in radio resource management and energy efficiency, road traffic management, network management, vehicular diagnostics, road traffic awareness for applications such as route planning, mobile commerce, and much more. Still open within the framework of dynamic and distributed access to the radio resource are the methods for monitoring the radio environment (the so-called “spectrum sensing”) and the transceiver technology to be used on the radio channels. A CR system works on a opportunistic basis searching for unused frequency bands called “white spaces” within the radio frequency spectrum with the intent to operate invisibly and without disturbing the primary users (PU) holding a license for one or more frequency bands. Spectrum sensing, that is, the fast and reliable detection of the PU’s even in the presence of in-band noise, is still a very complex problem with a decisive impact on the functionalities and capabilities of the CRs. The spectrum sensing techniques can be classified in two types: local and cooperative (distributed). The local techniques are performed by single devices exploiting the spectrum occupancy information in their spatial neighbourhood and can be divided into three categories (Budiarjo et al., 2008): "matched filter" (detection of pilot signals, preambles, etc.), "energy detection” (signal strength analysis) and “feature detection" (classification of signals according to their characteristics). Also, a combination of local techniques in a multi-stage design can be used to improve the sensing accuracy (Maleki et al., 2010). Nevertheless, the above-mentioned techniques are mostly inefficient for signals with reduced power or affected by phenomena typical for vehicular technology applications, such as shadowing and multi-path fading. To overcome such problems, cooperatives techniques can be used. Cooperative sensing is based on the aggregation of the spectrum data detected by multiple nodes using cognitive convergence algorithms in order to avoid the channel impairment problems that can lead to false detections. (Sanna et al., 2009). Within the energy detection method, a particular attention needs to be paid to the properties of the packets wavelet transformation for subband analysis, which, according to the literature, seems to be a feasible alternative to the classical FFT-based energy detection. Vehicular applications are in most cases characterized by the need of coping with fast changes in the radio environment, which lead, in this specific case of cognitive communication, to constrains in terms of short execution time of the spectrum sensing operations. From this point of view, the computational complexity of the wavelet packets method is of the same order of the state-of-the-art FFT algorithms, but the number of mathematical operations is lower using IIR polyphase filters (Murroni et al., 2010). In our work we are investigating the use of the wavelet packets for energy detection spectrum sensing operations based on the consideration that they have a finite duration and are self- and mutually-orthogonal at integer multiples of dyadic intervals. Hence, they are suitable for subband division and analysis: a generic signal can be then decomposed on the wavelet packet basis and represented as a collection of coefficients belonging to orthogonal subbands. Therefore, the total power of the signal can be evaluated as sum of the contributions of each subband, which can be separately computed in the wavelet domain. Furthermore, the wavelet packets can be used also for the feature detection spectrum sensing, using statistical parameters such as moments and medians. We concentrate in our research on both applications of the wavelet packets to the spectrum sensing operations, investigating their efficiency in terms of reliability and execution time, applied specifically to the needs of vehicular technology and transportation environments. The other key issue for the development of the previously mentioned standard is the choice of an adaptive/multicarrier modulation as basic candidate for data transmission, having as the most known representative the Orthogonal Frequency Division Multiplexing (OFDM) modulation. OFDM-like schemes are mature enough to be chosen as a core technology for dynamic access wireless networks. At the same time, the potentialities in terms of optimization for this specific purpose are not yet thoroughly investigated. Particularly, the Wavelet Packet Division Multiplexing (WPDM) modulation method, already known for about ten years to the scientific community, is a suitable candidate to satisfy the requirements on physical level for a dynamic access network (Wong et al., 1997): WPDM has already proven to be able to overcome some of the OFDM limits (limited spectral efficiency, problems with temporal synchronization especially in channels affected by fading) and is at the same time based on use of the same wavelet packets employed for subband analysis used for spectrum sensing operations . Our research investigates the use of the WPDM for cognitive radio purposes, combined with the wavelet approach for spectrum sensing, for offering a complete, wavelet-based solution for cognitive application focused on the problematic of vehicular communication (channel impairments, high relative velocity of the communication peers etc.)

    Fading-aware packet scheduling algorithm in OFDM-MIMO systems

    Get PDF
    To maximize system throughput and guarantee the quality of service(QoS) of multimedia traffic in orthogonal frequency division multiplexing(OFDM) systems with smart antennas, a new packet scheduler is introduced to consider QoS requirements, packet location in the frame, and modulation level. In the frequency domain, several consecutive subchannels are grouped as a frequency subband. Each subband in a frame can be used to transmit a packet, and can be reused by several users in a multiple-input and multiple-output (MIMO) systems. In this paper, we consider the adaptive packet scheduling algorithms design for OFDM/SDMA system.Based on the BER requirements, all traffics are divided into classes.Based on such classification, a dynamic packet scheduler is proposed,which greatly improves system capacity, and can guarantee QoS requirements.Adaptive modulation is also applied in the scheduler. Then, the complexity analysis of these algorithms is given. When compared with existing schedulers, our scheduler achieves higher system capacity with much reduced complexity. The use of adaptive modulation further enhances the system capacity. Simulation results demonstrate that as the traffic load increases, the new scheduler has much better performance in system throughput, average delay, and packet loss rate.published_or_final_versio

    Resource Allocation in Heterogeneous Networks

    Get PDF
    • …
    corecore